{"title":"反应扩散模型中罕见事件的指数慢混合和撞击次数","authors":"K. Tsunoda","doi":"10.30757/alea.v19-48","DOIUrl":null,"url":null,"abstract":". We consider the superposition of symmetric simple exclusion dynamics speeded-up in time, with spin-flip dynamics in a one-dimensional interval with periodic boundary conditions. We show that the mixing time has an exponential lower bound in the system size if the potential of the hydrodynamic equation has two or more local minima. We also apply our estimates to show that the normalized hitting times of rare events converge to a mean one exponential random variable if the potential has a unique minimum. deviation the quasi-potential and solutions to the","PeriodicalId":49244,"journal":{"name":"Alea-Latin American Journal of Probability and Mathematical Statistics","volume":"1 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2021-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exponentially slow mixing and hitting times of rare events for a reaction–diffusion model\",\"authors\":\"K. Tsunoda\",\"doi\":\"10.30757/alea.v19-48\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". We consider the superposition of symmetric simple exclusion dynamics speeded-up in time, with spin-flip dynamics in a one-dimensional interval with periodic boundary conditions. We show that the mixing time has an exponential lower bound in the system size if the potential of the hydrodynamic equation has two or more local minima. We also apply our estimates to show that the normalized hitting times of rare events converge to a mean one exponential random variable if the potential has a unique minimum. deviation the quasi-potential and solutions to the\",\"PeriodicalId\":49244,\"journal\":{\"name\":\"Alea-Latin American Journal of Probability and Mathematical Statistics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Alea-Latin American Journal of Probability and Mathematical Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.30757/alea.v19-48\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Alea-Latin American Journal of Probability and Mathematical Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.30757/alea.v19-48","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Exponentially slow mixing and hitting times of rare events for a reaction–diffusion model
. We consider the superposition of symmetric simple exclusion dynamics speeded-up in time, with spin-flip dynamics in a one-dimensional interval with periodic boundary conditions. We show that the mixing time has an exponential lower bound in the system size if the potential of the hydrodynamic equation has two or more local minima. We also apply our estimates to show that the normalized hitting times of rare events converge to a mean one exponential random variable if the potential has a unique minimum. deviation the quasi-potential and solutions to the
期刊介绍:
ALEA publishes research articles in probability theory, stochastic processes, mathematical statistics, and their applications. It publishes also review articles of subjects which developed considerably in recent years. All articles submitted go through a rigorous refereeing process by peers and are published immediately after accepted.
ALEA is an electronic journal of the Latin-american probability and statistical community which provides open access to all of its content and uses only free programs. Authors are allowed to deposit their published article into their institutional repository, freely and with no embargo, as long as they acknowledge the source of the paper.
ALEA is affiliated with the Institute of Mathematical Statistics.