配置模型上随机游走留下的空集的临界窗口

IF 0.6 4区 数学 Q4 STATISTICS & PROBABILITY
J. Černý, T. Hayder
{"title":"配置模型上随机游走留下的空集的临界窗口","authors":"J. Černý, T. Hayder","doi":"10.30757/alea.v19-10","DOIUrl":null,"url":null,"abstract":"We study the simple random walk on the configuration model with given degree sequence (d1 , . . . , d n n) and investigate the connected components of its vacant set at level u > 0. We show that the size of the maximal connected component exhibits a phase transition at level u∗ which can be related with the critical parameter of random interlacements on a certain Galton-Watson tree. We further show that there is a critical window of size n−1/3 around u∗ in which the largest connected components of the vacant set have a metric space scaling limit resembling the one of the critical Erdős-Rényi random graph.","PeriodicalId":49244,"journal":{"name":"Alea-Latin American Journal of Probability and Mathematical Statistics","volume":"66 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Critical window for the vacant set left by random walk on the configuration model\",\"authors\":\"J. Černý, T. Hayder\",\"doi\":\"10.30757/alea.v19-10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the simple random walk on the configuration model with given degree sequence (d1 , . . . , d n n) and investigate the connected components of its vacant set at level u > 0. We show that the size of the maximal connected component exhibits a phase transition at level u∗ which can be related with the critical parameter of random interlacements on a certain Galton-Watson tree. We further show that there is a critical window of size n−1/3 around u∗ in which the largest connected components of the vacant set have a metric space scaling limit resembling the one of the critical Erdős-Rényi random graph.\",\"PeriodicalId\":49244,\"journal\":{\"name\":\"Alea-Latin American Journal of Probability and Mathematical Statistics\",\"volume\":\"66 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Alea-Latin American Journal of Probability and Mathematical Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.30757/alea.v19-10\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Alea-Latin American Journal of Probability and Mathematical Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.30757/alea.v19-10","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

摘要

研究了给定度序列(d1,…)的构型模型上的简单随机漫步问题。, d nn),研究其空集在水平u >0 0的连通分量。我们证明了最大连通分量的大小在u *水平上表现出一个相变,这个相变可以与某一Galton-Watson树上随机交错的临界参数有关。我们进一步证明了在u *周围存在一个大小为n−1/3的临界窗口,其中空集的最大连通分量具有类似于临界Erdős-Rényi随机图的度量空间缩放极限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Critical window for the vacant set left by random walk on the configuration model
We study the simple random walk on the configuration model with given degree sequence (d1 , . . . , d n n) and investigate the connected components of its vacant set at level u > 0. We show that the size of the maximal connected component exhibits a phase transition at level u∗ which can be related with the critical parameter of random interlacements on a certain Galton-Watson tree. We further show that there is a critical window of size n−1/3 around u∗ in which the largest connected components of the vacant set have a metric space scaling limit resembling the one of the critical Erdős-Rényi random graph.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
48
期刊介绍: ALEA publishes research articles in probability theory, stochastic processes, mathematical statistics, and their applications. It publishes also review articles of subjects which developed considerably in recent years. All articles submitted go through a rigorous refereeing process by peers and are published immediately after accepted. ALEA is an electronic journal of the Latin-american probability and statistical community which provides open access to all of its content and uses only free programs. Authors are allowed to deposit their published article into their institutional repository, freely and with no embargo, as long as they acknowledge the source of the paper. ALEA is affiliated with the Institute of Mathematical Statistics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信