{"title":"由无平衡点和原点处无二次等时中心的线性系统构成的不连续分段微分系统的非代数交叉极限环","authors":"Sabah Benadouane, A. Bendjeddou, A. Berbache","doi":"10.30755/nsjom.13397","DOIUrl":null,"url":null,"abstract":"","PeriodicalId":38723,"journal":{"name":"Novi Sad Journal of Mathematics","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-algebraic crossing limit cycle for discontinuous piecewise\\n differential systems formed by a linear system without equilibrium points\\n and quadratic isochronous centers at the origin\",\"authors\":\"Sabah Benadouane, A. Bendjeddou, A. Berbache\",\"doi\":\"10.30755/nsjom.13397\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\",\"PeriodicalId\":38723,\"journal\":{\"name\":\"Novi Sad Journal of Mathematics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Novi Sad Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30755/nsjom.13397\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Novi Sad Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30755/nsjom.13397","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
Non-algebraic crossing limit cycle for discontinuous piecewise
differential systems formed by a linear system without equilibrium points
and quadratic isochronous centers at the origin