{"title":"计划一项实验,以解决建筑公差(参考)间隔的选定任务","authors":"С.В. Гадецька, В.Ю. Дубницький, Ю.І. Кушнерук, О.І. Ходирєв","doi":"10.30748/soi.2020.161.05","DOIUrl":null,"url":null,"abstract":"Поставлено і розв’язано для деяких окремих випадків, важливих в практичній діяльності, обернену задачу побудови толерантних інтервалів. Розв’язок отримано для планування експерименту в непараметричному випадку, а також для рівномірного розподілу, показникового розподілу, розподілу Вейбулла, нормального розподілу, логарифмічно нормального розподілу. Запропоновано чисельні методи розв’язання поставлених задач, доступних для найбільш поширених програмних продуктів. Прямою задачею побудови толерантних інтервалів в параметричному випадку названо задачу, в якій при заданому об'ємі вибірки, відомому закону розподілу і його параметрів, визначених за вибірковими даними, заданому рівні довіри (статистичній надійності) необхідно визначити межі можливих значень випадкової величини, в яких може знаходитися задана частка вибірки. За відсутності відомостей про вид закону розподілу вибірки розглянуто розв’язок задачі в непараметричному випадку. При виконанні розрахунків чисельних прикладів прийнято наступні умови. Для частки генеральної сукупності прийнято стандартні умови: 0,75; 0,90; 0,95; 0,99; для заданої статистичної надійності прийнято значення: 0,90; 0,95; 0,99. Прийнято, що вибірка містить не менш ніж 30 спостережень. Обмеження на об'єм вибірки обумовлені тим, що, по-перше, при меншому об'ємі вибірки необхідне створення спеціалізованих програмних продуктів, по-друге, обробка даних, отриманих по вибірках меншого об’єму, не завжди має змістовний сенс. При розв’язанні задачі в непараметричному випадку отримано таблицю, яка дозволяє обрати розв’язок поставленої задачі для заданих умов. Показано, що вибірки більше, ніж 300 спостережень не дають істотних змін у розв’язку задачі. Для всіх перерахованих розподілів визначені, для нижнього і верхнього значень меж толерантних інтервалів, об'єми вибірок, що забезпечують необхідні ймовірнісні характеристики: частку вибірки в генеральній сукупності і її статистичну надійність. Для нормального розподілу поставлена задача вирішена для варіанту двостороннього толерантного інтервалу.","PeriodicalId":32737,"journal":{"name":"Sistemi obrobki informatsiyi","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Планування експерименту при розв’язанні оберненої задачі побудови толерантних (референсних) інтервалів\",\"authors\":\"С.В. Гадецька, В.Ю. Дубницький, Ю.І. Кушнерук, О.І. Ходирєв\",\"doi\":\"10.30748/soi.2020.161.05\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Поставлено і розв’язано для деяких окремих випадків, важливих в практичній діяльності, обернену задачу побудови толерантних інтервалів. Розв’язок отримано для планування експерименту в непараметричному випадку, а також для рівномірного розподілу, показникового розподілу, розподілу Вейбулла, нормального розподілу, логарифмічно нормального розподілу. Запропоновано чисельні методи розв’язання поставлених задач, доступних для найбільш поширених програмних продуктів. Прямою задачею побудови толерантних інтервалів в параметричному випадку названо задачу, в якій при заданому об'ємі вибірки, відомому закону розподілу і його параметрів, визначених за вибірковими даними, заданому рівні довіри (статистичній надійності) необхідно визначити межі можливих значень випадкової величини, в яких може знаходитися задана частка вибірки. За відсутності відомостей про вид закону розподілу вибірки розглянуто розв’язок задачі в непараметричному випадку. При виконанні розрахунків чисельних прикладів прийнято наступні умови. Для частки генеральної сукупності прийнято стандартні умови: 0,75; 0,90; 0,95; 0,99; для заданої статистичної надійності прийнято значення: 0,90; 0,95; 0,99. Прийнято, що вибірка містить не менш ніж 30 спостережень. Обмеження на об'єм вибірки обумовлені тим, що, по-перше, при меншому об'ємі вибірки необхідне створення спеціалізованих програмних продуктів, по-друге, обробка даних, отриманих по вибірках меншого об’єму, не завжди має змістовний сенс. При розв’язанні задачі в непараметричному випадку отримано таблицю, яка дозволяє обрати розв’язок поставленої задачі для заданих умов. Показано, що вибірки більше, ніж 300 спостережень не дають істотних змін у розв’язку задачі. Для всіх перерахованих розподілів визначені, для нижнього і верхнього значень меж толерантних інтервалів, об'єми вибірок, що забезпечують необхідні ймовірнісні характеристики: частку вибірки в генеральній сукупності і її статистичну надійність. Для нормального розподілу поставлена задача вирішена для варіанту двостороннього толерантного інтервалу.\",\"PeriodicalId\":32737,\"journal\":{\"name\":\"Sistemi obrobki informatsiyi\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sistemi obrobki informatsiyi\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30748/soi.2020.161.05\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sistemi obrobki informatsiyi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30748/soi.2020.161.05","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Планування експерименту при розв’язанні оберненої задачі побудови толерантних (референсних) інтервалів
Поставлено і розв’язано для деяких окремих випадків, важливих в практичній діяльності, обернену задачу побудови толерантних інтервалів. Розв’язок отримано для планування експерименту в непараметричному випадку, а також для рівномірного розподілу, показникового розподілу, розподілу Вейбулла, нормального розподілу, логарифмічно нормального розподілу. Запропоновано чисельні методи розв’язання поставлених задач, доступних для найбільш поширених програмних продуктів. Прямою задачею побудови толерантних інтервалів в параметричному випадку названо задачу, в якій при заданому об'ємі вибірки, відомому закону розподілу і його параметрів, визначених за вибірковими даними, заданому рівні довіри (статистичній надійності) необхідно визначити межі можливих значень випадкової величини, в яких може знаходитися задана частка вибірки. За відсутності відомостей про вид закону розподілу вибірки розглянуто розв’язок задачі в непараметричному випадку. При виконанні розрахунків чисельних прикладів прийнято наступні умови. Для частки генеральної сукупності прийнято стандартні умови: 0,75; 0,90; 0,95; 0,99; для заданої статистичної надійності прийнято значення: 0,90; 0,95; 0,99. Прийнято, що вибірка містить не менш ніж 30 спостережень. Обмеження на об'єм вибірки обумовлені тим, що, по-перше, при меншому об'ємі вибірки необхідне створення спеціалізованих програмних продуктів, по-друге, обробка даних, отриманих по вибірках меншого об’єму, не завжди має змістовний сенс. При розв’язанні задачі в непараметричному випадку отримано таблицю, яка дозволяє обрати розв’язок поставленої задачі для заданих умов. Показано, що вибірки більше, ніж 300 спостережень не дають істотних змін у розв’язку задачі. Для всіх перерахованих розподілів визначені, для нижнього і верхнього значень меж толерантних інтервалів, об'єми вибірок, що забезпечують необхідні ймовірнісні характеристики: частку вибірки в генеральній сукупності і її статистичну надійність. Для нормального розподілу поставлена задача вирішена для варіанту двостороннього толерантного інтервалу.