影响鄂霍次克海结冰的新预报器

O.A. Korablev
{"title":"影响鄂霍次克海结冰的新预报器","authors":"O.A. Korablev","doi":"10.30730/gtrz.2021.5.1.060-066","DOIUrl":null,"url":null,"abstract":"Heat exchange between the three media – water, ice and air – must be taken into account when predicting the ice dynamics, drift and redistribution. It is known that the components of the heat balance vary quite strongly depending on the boundary of which media they are considered. Evaporation and turbulent heat exchange with the atmosphere are great in the areas of pure water, while evaporation from the surface of ice and snow is much less pronounced. To study the appearance of ice, it is necessary to consider only those environments between which intense heat exchange takes place; these environments are water and the atmosphere. This article studies the thermodynamic processes occurring over the seawater area by the statistical method of correlation analysis using the data on air temperature collected at hydrometeorological stations and those on the ice area from open sources. A new predictor is proposed, indicating a high correlation of 0.90–0.95 between the sum of degrees of daily temperature difference at the hydrometeorological stations of Okha and Oymyakon and the data on the area of the sea ice in the northwestern region of the Sea of Okhotsk on the last day of the month.","PeriodicalId":34500,"journal":{"name":"Geosistemy perekhodnykh zon","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On a new predictor affecting ice formation in the Sea of Okhotsk\",\"authors\":\"O.A. Korablev\",\"doi\":\"10.30730/gtrz.2021.5.1.060-066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Heat exchange between the three media – water, ice and air – must be taken into account when predicting the ice dynamics, drift and redistribution. It is known that the components of the heat balance vary quite strongly depending on the boundary of which media they are considered. Evaporation and turbulent heat exchange with the atmosphere are great in the areas of pure water, while evaporation from the surface of ice and snow is much less pronounced. To study the appearance of ice, it is necessary to consider only those environments between which intense heat exchange takes place; these environments are water and the atmosphere. This article studies the thermodynamic processes occurring over the seawater area by the statistical method of correlation analysis using the data on air temperature collected at hydrometeorological stations and those on the ice area from open sources. A new predictor is proposed, indicating a high correlation of 0.90–0.95 between the sum of degrees of daily temperature difference at the hydrometeorological stations of Okha and Oymyakon and the data on the area of the sea ice in the northwestern region of the Sea of Okhotsk on the last day of the month.\",\"PeriodicalId\":34500,\"journal\":{\"name\":\"Geosistemy perekhodnykh zon\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geosistemy perekhodnykh zon\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30730/gtrz.2021.5.1.060-066\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geosistemy perekhodnykh zon","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30730/gtrz.2021.5.1.060-066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在预测冰的动力学、漂移和再分布时,必须考虑到水、冰和空气这三种介质之间的热交换。众所周知,根据所考虑的介质的边界,热平衡的组成部分变化很大。在纯水地区,蒸发和与大气的湍流热交换是很大的,而冰雪表面的蒸发则不那么明显。为了研究冰的外观,有必要只考虑那些发生强烈热交换的环境;这些环境就是水和大气。本文利用水文气象站的气温资料和公开来源的冰区气温资料,采用相关分析的统计方法研究了海水区热力过程。提出了一种新的预测因子,表明奥哈和奥伊米亚康水文气象站的日温差与鄂霍次克海西北部月末海冰面积的高度相关系数为0.90 ~ 0.95。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On a new predictor affecting ice formation in the Sea of Okhotsk
Heat exchange between the three media – water, ice and air – must be taken into account when predicting the ice dynamics, drift and redistribution. It is known that the components of the heat balance vary quite strongly depending on the boundary of which media they are considered. Evaporation and turbulent heat exchange with the atmosphere are great in the areas of pure water, while evaporation from the surface of ice and snow is much less pronounced. To study the appearance of ice, it is necessary to consider only those environments between which intense heat exchange takes place; these environments are water and the atmosphere. This article studies the thermodynamic processes occurring over the seawater area by the statistical method of correlation analysis using the data on air temperature collected at hydrometeorological stations and those on the ice area from open sources. A new predictor is proposed, indicating a high correlation of 0.90–0.95 between the sum of degrees of daily temperature difference at the hydrometeorological stations of Okha and Oymyakon and the data on the area of the sea ice in the northwestern region of the Sea of Okhotsk on the last day of the month.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
7
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信