{"title":"限制Besov空间中正压条件下可压缩Navier-Stokes方程的病态性","authors":"T. Iwabuchi, T. Ogawa","doi":"10.2969/JMSJ/81598159","DOIUrl":null,"url":null,"abstract":"We consider the compressible Navier–Stokes system in the critical Besov spaces. It is known that the system is (semi-)well-posed in the scaling semi-invariant spaces of the homogeneous Besov spaces Ḃ n p p,1 × Ḃ n p −1 p,1 for all 1 ≤ p < 2n. However, if the data is in a larger scaling invariant class such as p > 2n, then the system is not well-posed. In this paper, we demonstrate that for the critical case p = 2n the system is ill-posed by showing that a sequence of initial data is constructed to show discontinuity of the solution map in the critical space. Our result indicates that the well-posedness results due to Danchin [10] and Haspot [18] are indeed sharp in the framework of the homogeneous Besov spaces.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Ill-posedness for the compressible Navier–Stokes equations under barotropic condition in limiting Besov spaces\",\"authors\":\"T. Iwabuchi, T. Ogawa\",\"doi\":\"10.2969/JMSJ/81598159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the compressible Navier–Stokes system in the critical Besov spaces. It is known that the system is (semi-)well-posed in the scaling semi-invariant spaces of the homogeneous Besov spaces Ḃ n p p,1 × Ḃ n p −1 p,1 for all 1 ≤ p < 2n. However, if the data is in a larger scaling invariant class such as p > 2n, then the system is not well-posed. In this paper, we demonstrate that for the critical case p = 2n the system is ill-posed by showing that a sequence of initial data is constructed to show discontinuity of the solution map in the critical space. Our result indicates that the well-posedness results due to Danchin [10] and Haspot [18] are indeed sharp in the framework of the homogeneous Besov spaces.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2969/JMSJ/81598159\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2969/JMSJ/81598159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
摘要
考虑临界Besov空间中的可压缩Navier-Stokes系统。已知系统在齐次Besov空间的缩放半不变空间中是(半)适定的Ḃ n p p,1 × Ḃ n p−1p,1对于所有1≤p < 2n。然而,如果数据是一个更大的尺度不变类,如p bbb20n,那么系统不是适定的。在本文中,我们通过构造一个初始数据序列来表示解映射在临界空间中的不连续,证明了对于临界情况p = 2n,系统是不适定的。我们的结果表明,在齐次Besov空间的框架下,由Danchin[10]和Haspot[18]引起的适定性结果确实是尖锐的。
Ill-posedness for the compressible Navier–Stokes equations under barotropic condition in limiting Besov spaces
We consider the compressible Navier–Stokes system in the critical Besov spaces. It is known that the system is (semi-)well-posed in the scaling semi-invariant spaces of the homogeneous Besov spaces Ḃ n p p,1 × Ḃ n p −1 p,1 for all 1 ≤ p < 2n. However, if the data is in a larger scaling invariant class such as p > 2n, then the system is not well-posed. In this paper, we demonstrate that for the critical case p = 2n the system is ill-posed by showing that a sequence of initial data is constructed to show discontinuity of the solution map in the critical space. Our result indicates that the well-posedness results due to Danchin [10] and Haspot [18] are indeed sharp in the framework of the homogeneous Besov spaces.