离散粒子群优化算法在有能力车辆路径问题中的实现

Aisyahna Nurul Mauliddina, Faris Ahmad Saifuddin, Adesatya Lentera Nagari, A. P. Redi, Adji Candra Kurniawan, Nanda Ruswandi
{"title":"离散粒子群优化算法在有能力车辆路径问题中的实现","authors":"Aisyahna Nurul Mauliddina, Faris Ahmad Saifuddin, Adesatya Lentera Nagari, A. P. Redi, Adji Candra Kurniawan, Nanda Ruswandi","doi":"10.30656/jsmi.v4i2.2607","DOIUrl":null,"url":null,"abstract":"Capacitated Vehicle Routing Problem (CVRP) is known as an NP-hard problem. It is because CVRP problems are very hard for finding optimal solutions, especially in large instances. In general, the NP-hard problem is difficult to solve in the exact method, so the metaheuristic approach is implemented in the CVRP problem to find a near-optimal solution in reasonable computational time. This research uses the DPSO algorithm for solving CVRP with ten instances of benchmark datasets. DPSO implementation uses tuning parameters with the One Factor at Time (OFAT) method to select the best DPSO parameters. The outcome objective function will be compared with several PSO models proposed in previous studies. Statistical test using One Way Reputed Measure ANOVA is needed to compare algorithm performance. First, ANOVA uses for comparing’s results. Then, ANOVA is also used to test DPSO’s performance compared with DPSO-SA, SR-1, and SR-2 algorithm. The computational result shows that the basic DPSO algorithm not competitive enough with other methods for solving CVRP.","PeriodicalId":53057,"journal":{"name":"Jurnal Sistem dan Manajemen Industri","volume":"33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Implementation of discrete particle swarm optimization algorithm in the capacitated vehicle routing problem\",\"authors\":\"Aisyahna Nurul Mauliddina, Faris Ahmad Saifuddin, Adesatya Lentera Nagari, A. P. Redi, Adji Candra Kurniawan, Nanda Ruswandi\",\"doi\":\"10.30656/jsmi.v4i2.2607\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Capacitated Vehicle Routing Problem (CVRP) is known as an NP-hard problem. It is because CVRP problems are very hard for finding optimal solutions, especially in large instances. In general, the NP-hard problem is difficult to solve in the exact method, so the metaheuristic approach is implemented in the CVRP problem to find a near-optimal solution in reasonable computational time. This research uses the DPSO algorithm for solving CVRP with ten instances of benchmark datasets. DPSO implementation uses tuning parameters with the One Factor at Time (OFAT) method to select the best DPSO parameters. The outcome objective function will be compared with several PSO models proposed in previous studies. Statistical test using One Way Reputed Measure ANOVA is needed to compare algorithm performance. First, ANOVA uses for comparing’s results. Then, ANOVA is also used to test DPSO’s performance compared with DPSO-SA, SR-1, and SR-2 algorithm. The computational result shows that the basic DPSO algorithm not competitive enough with other methods for solving CVRP.\",\"PeriodicalId\":53057,\"journal\":{\"name\":\"Jurnal Sistem dan Manajemen Industri\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Sistem dan Manajemen Industri\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30656/jsmi.v4i2.2607\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Sistem dan Manajemen Industri","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30656/jsmi.v4i2.2607","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

有能力车辆路径问题(Capacitated Vehicle Routing Problem, CVRP)被称为np困难问题。这是因为CVRP问题很难找到最优解,特别是在大型实例中。一般来说,np困难问题难以用精确的方法求解,因此在CVRP问题中采用元启发式方法,在合理的计算时间内找到近似最优解。本研究使用DPSO算法求解10个基准数据集实例的CVRP问题。DPSO实现使用一次一因子(OFAT)方法调优参数来选择最佳DPSO参数。结果目标函数将与先前研究中提出的几种PSO模型进行比较。需要使用单向驰名测量方差分析进行统计检验来比较算法的性能。首先,方差分析用于比较结果。然后,利用方差分析对DPSO算法与DPSO- sa、SR-1、SR-2算法的性能进行比较。计算结果表明,基本DPSO算法与其他求解CVRP的方法相比,具有较强的竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Implementation of discrete particle swarm optimization algorithm in the capacitated vehicle routing problem
Capacitated Vehicle Routing Problem (CVRP) is known as an NP-hard problem. It is because CVRP problems are very hard for finding optimal solutions, especially in large instances. In general, the NP-hard problem is difficult to solve in the exact method, so the metaheuristic approach is implemented in the CVRP problem to find a near-optimal solution in reasonable computational time. This research uses the DPSO algorithm for solving CVRP with ten instances of benchmark datasets. DPSO implementation uses tuning parameters with the One Factor at Time (OFAT) method to select the best DPSO parameters. The outcome objective function will be compared with several PSO models proposed in previous studies. Statistical test using One Way Reputed Measure ANOVA is needed to compare algorithm performance. First, ANOVA uses for comparing’s results. Then, ANOVA is also used to test DPSO’s performance compared with DPSO-SA, SR-1, and SR-2 algorithm. The computational result shows that the basic DPSO algorithm not competitive enough with other methods for solving CVRP.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
10
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信