{"title":"云解析模式中模拟风暴寿命对通风参数化的敏感性","authors":"Yen-Liang Chou, Pao K. Wang, K. Cheng","doi":"10.3319/tao.2021.06.02.01","DOIUrl":null,"url":null,"abstract":"We perform a sensitivity study on the ventilation effect of large hydrometeors, namely, raindrops, snow aggregates, and hail in a cloud-resolving model. The ventilation effect could accelerate the heat and mass transfer rates between vapor and falling hydrometeors. It causes the falling hydrometeors to grow (in a supersaturated environment) and dissipate (in a subsaturated environment) faster than the stationary ones. The parameterizations of the ventilation effect on hydrometeors in a cloud model is critical as it could dramatically alter the structure and the lifespan of the simulated storm. Enhancing the ventilation coefficients of falling hydrometeors leads to a longer-lived storm featured by apparent storm splitting. The temporal evolution of hail density fluctuates greater than the default case (the control case) indicating both stronger deposition and sublimation in hail microphysical processes. However, both rainfall and hailfall become less intense than the control run. In contrast, reducing the ventilation effect causes moderate evaporation of raindrops as they fall through subsaturated air. Consequently, the concentration and precipitation rate of raindrops increase near the surface. Strong downdraft accompanying the heavy rainfall cuts off the low-level inflow of unstable moist air into the storm and results in early dissipation of the storm.","PeriodicalId":22259,"journal":{"name":"Terrestrial, Atmospheric and Oceanic Sciences","volume":"1 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Sensitivity of simulated storm life span to ventilation parameterization in a cloud resolving model\",\"authors\":\"Yen-Liang Chou, Pao K. Wang, K. Cheng\",\"doi\":\"10.3319/tao.2021.06.02.01\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We perform a sensitivity study on the ventilation effect of large hydrometeors, namely, raindrops, snow aggregates, and hail in a cloud-resolving model. The ventilation effect could accelerate the heat and mass transfer rates between vapor and falling hydrometeors. It causes the falling hydrometeors to grow (in a supersaturated environment) and dissipate (in a subsaturated environment) faster than the stationary ones. The parameterizations of the ventilation effect on hydrometeors in a cloud model is critical as it could dramatically alter the structure and the lifespan of the simulated storm. Enhancing the ventilation coefficients of falling hydrometeors leads to a longer-lived storm featured by apparent storm splitting. The temporal evolution of hail density fluctuates greater than the default case (the control case) indicating both stronger deposition and sublimation in hail microphysical processes. However, both rainfall and hailfall become less intense than the control run. In contrast, reducing the ventilation effect causes moderate evaporation of raindrops as they fall through subsaturated air. Consequently, the concentration and precipitation rate of raindrops increase near the surface. Strong downdraft accompanying the heavy rainfall cuts off the low-level inflow of unstable moist air into the storm and results in early dissipation of the storm.\",\"PeriodicalId\":22259,\"journal\":{\"name\":\"Terrestrial, Atmospheric and Oceanic Sciences\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Terrestrial, Atmospheric and Oceanic Sciences\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.3319/tao.2021.06.02.01\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Terrestrial, Atmospheric and Oceanic Sciences","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3319/tao.2021.06.02.01","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Sensitivity of simulated storm life span to ventilation parameterization in a cloud resolving model
We perform a sensitivity study on the ventilation effect of large hydrometeors, namely, raindrops, snow aggregates, and hail in a cloud-resolving model. The ventilation effect could accelerate the heat and mass transfer rates between vapor and falling hydrometeors. It causes the falling hydrometeors to grow (in a supersaturated environment) and dissipate (in a subsaturated environment) faster than the stationary ones. The parameterizations of the ventilation effect on hydrometeors in a cloud model is critical as it could dramatically alter the structure and the lifespan of the simulated storm. Enhancing the ventilation coefficients of falling hydrometeors leads to a longer-lived storm featured by apparent storm splitting. The temporal evolution of hail density fluctuates greater than the default case (the control case) indicating both stronger deposition and sublimation in hail microphysical processes. However, both rainfall and hailfall become less intense than the control run. In contrast, reducing the ventilation effect causes moderate evaporation of raindrops as they fall through subsaturated air. Consequently, the concentration and precipitation rate of raindrops increase near the surface. Strong downdraft accompanying the heavy rainfall cuts off the low-level inflow of unstable moist air into the storm and results in early dissipation of the storm.
期刊介绍:
The major publication of the Chinese Geoscience Union (located in Taipei) since 1990, the journal of Terrestrial, Atmospheric and Oceanic Sciences (TAO) publishes bi-monthly scientific research articles, notes, correspondences and reviews in all disciplines of the Earth sciences. It is the amalgamation of the following journals:
Papers in Meteorological Research (published by the Meteorological Society of the ROC) since Vol. 12, No. 2
Bulletin of Geophysics (published by the Institute of Geophysics, National Central University) since No. 27
Acta Oceanographica Taiwanica (published by the Institute of Oceanography, National Taiwan University) since Vol. 42.