台式光学参数啁啾脉冲放大器:过去和现在

IF 15.3 1区 物理与天体物理 Q1 OPTICS
A. Dubietis, A. Matijošius
{"title":"台式光学参数啁啾脉冲放大器:过去和现在","authors":"A. Dubietis, A. Matijošius","doi":"10.29026/oea.2023.220046","DOIUrl":null,"url":null,"abstract":"The generation of power-and wavelength-scalable few optical cycle pulses remains one of the major challenges in modern laser physics. Over the past decade, the development of table-top optical parametric chirped pulse amplification-based systems was progressing at amazing speed, demonstrating excellent performance characteristics in terms of pulse duration, energy, peak power and repetition rate, which place them at the front line of modern ultrafast laser technology. At present, table-top optical parametric chirped pulse amplifiers comprise a unique class of ultrafast light sources, which currently amplify octave-spanning spectra and produce carrier-envelope phase-stable, few optical cycle pulses with multi-gigawatt to multi-terawatt peak powers and multi-watt average powers, with carrier wavelengths spanning a considerable range of the optical spectrum. This article gives an overview on the state of the art of table-top optical parametric chirped pulse amplifiers, addressing their relevant scientific and technological aspects, and provides a short out-look of practical applications in the growing field of ultrafast science.","PeriodicalId":19611,"journal":{"name":"Opto-Electronic Advances","volume":"47 1","pages":""},"PeriodicalIF":15.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Table-top optical parametric chirped pulse amplifiers: past and present\",\"authors\":\"A. Dubietis, A. Matijošius\",\"doi\":\"10.29026/oea.2023.220046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The generation of power-and wavelength-scalable few optical cycle pulses remains one of the major challenges in modern laser physics. Over the past decade, the development of table-top optical parametric chirped pulse amplification-based systems was progressing at amazing speed, demonstrating excellent performance characteristics in terms of pulse duration, energy, peak power and repetition rate, which place them at the front line of modern ultrafast laser technology. At present, table-top optical parametric chirped pulse amplifiers comprise a unique class of ultrafast light sources, which currently amplify octave-spanning spectra and produce carrier-envelope phase-stable, few optical cycle pulses with multi-gigawatt to multi-terawatt peak powers and multi-watt average powers, with carrier wavelengths spanning a considerable range of the optical spectrum. This article gives an overview on the state of the art of table-top optical parametric chirped pulse amplifiers, addressing their relevant scientific and technological aspects, and provides a short out-look of practical applications in the growing field of ultrafast science.\",\"PeriodicalId\":19611,\"journal\":{\"name\":\"Opto-Electronic Advances\",\"volume\":\"47 1\",\"pages\":\"\"},\"PeriodicalIF\":15.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Opto-Electronic Advances\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.29026/oea.2023.220046\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Opto-Electronic Advances","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.29026/oea.2023.220046","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 6

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Table-top optical parametric chirped pulse amplifiers: past and present
The generation of power-and wavelength-scalable few optical cycle pulses remains one of the major challenges in modern laser physics. Over the past decade, the development of table-top optical parametric chirped pulse amplification-based systems was progressing at amazing speed, demonstrating excellent performance characteristics in terms of pulse duration, energy, peak power and repetition rate, which place them at the front line of modern ultrafast laser technology. At present, table-top optical parametric chirped pulse amplifiers comprise a unique class of ultrafast light sources, which currently amplify octave-spanning spectra and produce carrier-envelope phase-stable, few optical cycle pulses with multi-gigawatt to multi-terawatt peak powers and multi-watt average powers, with carrier wavelengths spanning a considerable range of the optical spectrum. This article gives an overview on the state of the art of table-top optical parametric chirped pulse amplifiers, addressing their relevant scientific and technological aspects, and provides a short out-look of practical applications in the growing field of ultrafast science.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
19.30
自引率
7.10%
发文量
128
期刊介绍: Opto-Electronic Advances (OEA) is a distinguished scientific journal that has made significant strides since its inception in March 2018. Here's a collated summary of its key features and accomplishments: Impact Factor and Ranking: OEA boasts an impressive Impact Factor of 14.1, which positions it within the Q1 quartiles of the Optics category. This high ranking indicates that the journal is among the top 25% of its field in terms of citation impact. Open Access and Peer Review: As an open access journal, OEA ensures that research findings are freely available to the global scientific community, promoting wider dissemination and collaboration. It upholds rigorous academic standards through a peer review process, ensuring the quality and integrity of the published research. Database Indexing: OEA's content is indexed in several prestigious databases, including the Science Citation Index (SCI), Engineering Index (EI), Scopus, Chemical Abstracts (CA), and the Index to Chinese Periodical Articles (ICI). This broad indexing facilitates easy access to the journal's articles by researchers worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信