介绍了一种用总压分布来预测棱柱形船体在静水中阻力和性能的数学模型

IF 1.2 Q3 ENGINEERING, MARINE
P. Ghadimi, S. Tavakoli, M. A. F. Chekab, A. Dashtimanesh
{"title":"介绍了一种用总压分布来预测棱柱形船体在静水中阻力和性能的数学模型","authors":"P. Ghadimi, S. Tavakoli, M. A. F. Chekab, A. Dashtimanesh","doi":"10.3329/JNAME.V12I2.22351","DOIUrl":null,"url":null,"abstract":"Mathematical modeling of planing hulls and determination of their characteristics are the most important subjects in hydrodynamic study of planing vessels. In this paper, a new mathematical model has been developed based on pressure distribution. This model has been provided for two different situations: (1) for a situation in which all forces pass through the center of gravity and (2) for a situation in which forces don not necessarily pass through the center of gravity. Two algorithms have been designed for the governing equations. Computational results have been presented in the form of trim angle, total pressure, hydrodynamic and hydrostatic lift coefficients, spray apex and total resistance which includes frictional, spray and induced resistances. Accuracy of the model has been verified by comparing the numerical findings against the results of Savitsky's method and available experimental data. Good accuracy is displayed. Furthermore, effects of deadrise angle on trim angle of the craft, position of spray apex and resistance have been investigated.","PeriodicalId":55961,"journal":{"name":"Journal of Naval Architecture and Marine Engineering","volume":"12 1","pages":"73-94"},"PeriodicalIF":1.2000,"publicationDate":"2015-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3329/JNAME.V12I2.22351","citationCount":"27","resultStr":"{\"title\":\"Introducing a particular mathematical model for predicting the resistance and performance of prismatic planing hulls in calm water by means of total pressure distribution\",\"authors\":\"P. Ghadimi, S. Tavakoli, M. A. F. Chekab, A. Dashtimanesh\",\"doi\":\"10.3329/JNAME.V12I2.22351\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mathematical modeling of planing hulls and determination of their characteristics are the most important subjects in hydrodynamic study of planing vessels. In this paper, a new mathematical model has been developed based on pressure distribution. This model has been provided for two different situations: (1) for a situation in which all forces pass through the center of gravity and (2) for a situation in which forces don not necessarily pass through the center of gravity. Two algorithms have been designed for the governing equations. Computational results have been presented in the form of trim angle, total pressure, hydrodynamic and hydrostatic lift coefficients, spray apex and total resistance which includes frictional, spray and induced resistances. Accuracy of the model has been verified by comparing the numerical findings against the results of Savitsky's method and available experimental data. Good accuracy is displayed. Furthermore, effects of deadrise angle on trim angle of the craft, position of spray apex and resistance have been investigated.\",\"PeriodicalId\":55961,\"journal\":{\"name\":\"Journal of Naval Architecture and Marine Engineering\",\"volume\":\"12 1\",\"pages\":\"73-94\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2015-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.3329/JNAME.V12I2.22351\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Naval Architecture and Marine Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3329/JNAME.V12I2.22351\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MARINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Naval Architecture and Marine Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3329/JNAME.V12I2.22351","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 27

摘要

平面船体的数学建模和特性确定是平面船舶水动力研究的重要课题。本文建立了一种新的基于压力分布的数学模型。这个模型适用于两种不同的情况:(1)所有的力都经过重心的情况;(2)力不一定经过重心的情况。对控制方程设计了两种算法。计算结果以纵倾角、总压力、动、静压升力系数、喷淋顶点和总阻力(包括摩擦阻力、喷淋阻力和诱导阻力)的形式给出。通过将数值结果与Savitsky方法的结果和现有的实验数据进行比较,验证了模型的准确性。显示良好的精度。此外,还研究了死升角对艇侧倾角、喷水尖位置和阻力的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Introducing a particular mathematical model for predicting the resistance and performance of prismatic planing hulls in calm water by means of total pressure distribution
Mathematical modeling of planing hulls and determination of their characteristics are the most important subjects in hydrodynamic study of planing vessels. In this paper, a new mathematical model has been developed based on pressure distribution. This model has been provided for two different situations: (1) for a situation in which all forces pass through the center of gravity and (2) for a situation in which forces don not necessarily pass through the center of gravity. Two algorithms have been designed for the governing equations. Computational results have been presented in the form of trim angle, total pressure, hydrodynamic and hydrostatic lift coefficients, spray apex and total resistance which includes frictional, spray and induced resistances. Accuracy of the model has been verified by comparing the numerical findings against the results of Savitsky's method and available experimental data. Good accuracy is displayed. Furthermore, effects of deadrise angle on trim angle of the craft, position of spray apex and resistance have been investigated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
5.60%
发文量
0
审稿时长
20 weeks
期刊介绍: TJPRC: Journal of Naval Architecture and Marine Engineering (JNAME) is a peer reviewed journal and it provides a forum for engineers and scientists from a wide range of disciplines to present and discuss various phenomena in the utilization and preservation of ocean environment. Without being limited by the traditional categorization, it is encouraged to present advanced technology development and scientific research, as long as they are aimed for more and better human engagement with ocean environment. Topics include, but not limited to: marine hydrodynamics; structural mechanics; marine propulsion system; design methodology & practice; production technology; system dynamics & control; marine equipment technology; materials science; under-water acoustics; satellite observations; and information technology related to ship and marine systems; ocean energy systems; marine environmental engineering; maritime safety engineering; polar & arctic engineering; coastal & port engineering; aqua-cultural engineering; sub-sea engineering; and specialized water-craft engineering. International Journal of Naval Architecture and Ocean Engineering is published quarterly by the Society of Naval Architects of Korea. In addition to original, full-length, refereed papers, review articles by leading authorities and articulated technical discussions of highly technical interest are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信