{"title":"基于张力的张力腿平台(tbtlp)实验研究","authors":"D. S. B. Rao, R. Selvam, N. Srinivasan","doi":"10.3329/JNAME.V11I2.17341","DOIUrl":null,"url":null,"abstract":"Tension Leg Platforms (TLPs) are one of the reliable structures for offshore industry in deep waters because of its motion characteristics in heave, roll and pitch degrees of freedom. Heave motion is very important in offshore facilities and have to kept as minimum as possible. As the water depth increases TLPs suffers from some limitations and hence has to be modified to cater to deeper waters. One such concept proposed is Tension Based Tension Leg Platform (TBTLP). In this paper, experimental investigations carried out on a scaled model of a Tension Based Tension Leg Platform in regular waves are reported. This is the first ever experiments that was carried out on a scaled model of the new concept. To investigate the effect of Tension Base, experiments were also conducted on the TLP (without Tension Base) in two different water depths. RAOs have been compared for surge and heave dof of TLP and TBTLP. Numerical modeling of the TLP and TBTLP responses using ANSYS AQWA software are included as well for comparisons. DOI: http://dx.doi.org/10.3329/jname.v11i2.17341","PeriodicalId":55961,"journal":{"name":"Journal of Naval Architecture and Marine Engineering","volume":"6 1","pages":"105-116"},"PeriodicalIF":1.2000,"publicationDate":"2014-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3329/JNAME.V11I2.17341","citationCount":"2","resultStr":"{\"title\":\"EXPERIMENTAL INVESTIGATIONS ON TENSION BASED TENSION LEG PLATFORM (TBTLP)\",\"authors\":\"D. S. B. Rao, R. Selvam, N. Srinivasan\",\"doi\":\"10.3329/JNAME.V11I2.17341\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tension Leg Platforms (TLPs) are one of the reliable structures for offshore industry in deep waters because of its motion characteristics in heave, roll and pitch degrees of freedom. Heave motion is very important in offshore facilities and have to kept as minimum as possible. As the water depth increases TLPs suffers from some limitations and hence has to be modified to cater to deeper waters. One such concept proposed is Tension Based Tension Leg Platform (TBTLP). In this paper, experimental investigations carried out on a scaled model of a Tension Based Tension Leg Platform in regular waves are reported. This is the first ever experiments that was carried out on a scaled model of the new concept. To investigate the effect of Tension Base, experiments were also conducted on the TLP (without Tension Base) in two different water depths. RAOs have been compared for surge and heave dof of TLP and TBTLP. Numerical modeling of the TLP and TBTLP responses using ANSYS AQWA software are included as well for comparisons. DOI: http://dx.doi.org/10.3329/jname.v11i2.17341\",\"PeriodicalId\":55961,\"journal\":{\"name\":\"Journal of Naval Architecture and Marine Engineering\",\"volume\":\"6 1\",\"pages\":\"105-116\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2014-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.3329/JNAME.V11I2.17341\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Naval Architecture and Marine Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3329/JNAME.V11I2.17341\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MARINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Naval Architecture and Marine Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3329/JNAME.V11I2.17341","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
EXPERIMENTAL INVESTIGATIONS ON TENSION BASED TENSION LEG PLATFORM (TBTLP)
Tension Leg Platforms (TLPs) are one of the reliable structures for offshore industry in deep waters because of its motion characteristics in heave, roll and pitch degrees of freedom. Heave motion is very important in offshore facilities and have to kept as minimum as possible. As the water depth increases TLPs suffers from some limitations and hence has to be modified to cater to deeper waters. One such concept proposed is Tension Based Tension Leg Platform (TBTLP). In this paper, experimental investigations carried out on a scaled model of a Tension Based Tension Leg Platform in regular waves are reported. This is the first ever experiments that was carried out on a scaled model of the new concept. To investigate the effect of Tension Base, experiments were also conducted on the TLP (without Tension Base) in two different water depths. RAOs have been compared for surge and heave dof of TLP and TBTLP. Numerical modeling of the TLP and TBTLP responses using ANSYS AQWA software are included as well for comparisons. DOI: http://dx.doi.org/10.3329/jname.v11i2.17341
期刊介绍:
TJPRC: Journal of Naval Architecture and Marine Engineering (JNAME) is a peer reviewed journal and it provides a forum for engineers and scientists from a wide range of disciplines to present and discuss various phenomena in the utilization and preservation of ocean environment. Without being limited by the traditional categorization, it is encouraged to present advanced technology development and scientific research, as long as they are aimed for more and better human engagement with ocean environment. Topics include, but not limited to: marine hydrodynamics; structural mechanics; marine propulsion system; design methodology & practice; production technology; system dynamics & control; marine equipment technology; materials science; under-water acoustics; satellite observations; and information technology related to ship and marine systems; ocean energy systems; marine environmental engineering; maritime safety engineering; polar & arctic engineering; coastal & port engineering; aqua-cultural engineering; sub-sea engineering; and specialized water-craft engineering. International Journal of Naval Architecture and Ocean Engineering is published quarterly by the Society of Naval Architects of Korea. In addition to original, full-length, refereed papers, review articles by leading authorities and articulated technical discussions of highly technical interest are also published.