集成方法分类器在手写阿拉伯字符数据集上的性能分析

Abdul Rachman Manga’, A. N. Handayani, H. Herwanto, R. A. Asmara, Yudha Islami Sulistya, Kasmira Kasmira
{"title":"集成方法分类器在手写阿拉伯字符数据集上的性能分析","authors":"Abdul Rachman Manga’, A. N. Handayani, H. Herwanto, R. A. Asmara, Yudha Islami Sulistya, Kasmira Kasmira","doi":"10.33096/ilkom.v15i1.1357.186-192","DOIUrl":null,"url":null,"abstract":"Arabic character handwriting is one of the patterns and characteristics of each person's writing. This characteristic makes Arabic writing more challenging if the letter recognition process is based on a dataset of Arabic scripts. This Arabic script has been presented in a dataset totaling 16800, each representing a class of hijaiyah letters starting from alif to yes, consisting of 600 data for each class. The accuracy of the data used can be increased using the ensemble method. By using multiple algorithms at simultaneously, the ensemble technique can raise the level or result of a score in machine learning. This study's primary goal is to evaluate the ensemble method classifier's performance on datasets of handwritten Arabic characters. The classifier uses the ensemble method by applying the proposed soft voting to provide a multiclass classification of three machine learning algorithms, namely, SVM, Random Forest, and Decision Tree for classification. This research process produces an accuracy value for the voting classifier of 0.988 and several","PeriodicalId":33690,"journal":{"name":"Ilkom Jurnal Ilmiah","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of the Ensemble Method Classifier's Performance on Handwritten Arabic Characters Dataset\",\"authors\":\"Abdul Rachman Manga’, A. N. Handayani, H. Herwanto, R. A. Asmara, Yudha Islami Sulistya, Kasmira Kasmira\",\"doi\":\"10.33096/ilkom.v15i1.1357.186-192\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Arabic character handwriting is one of the patterns and characteristics of each person's writing. This characteristic makes Arabic writing more challenging if the letter recognition process is based on a dataset of Arabic scripts. This Arabic script has been presented in a dataset totaling 16800, each representing a class of hijaiyah letters starting from alif to yes, consisting of 600 data for each class. The accuracy of the data used can be increased using the ensemble method. By using multiple algorithms at simultaneously, the ensemble technique can raise the level or result of a score in machine learning. This study's primary goal is to evaluate the ensemble method classifier's performance on datasets of handwritten Arabic characters. The classifier uses the ensemble method by applying the proposed soft voting to provide a multiclass classification of three machine learning algorithms, namely, SVM, Random Forest, and Decision Tree for classification. This research process produces an accuracy value for the voting classifier of 0.988 and several\",\"PeriodicalId\":33690,\"journal\":{\"name\":\"Ilkom Jurnal Ilmiah\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ilkom Jurnal Ilmiah\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33096/ilkom.v15i1.1357.186-192\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ilkom Jurnal Ilmiah","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33096/ilkom.v15i1.1357.186-192","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

阿拉伯文字笔迹是每个人的书写模式和特征之一。如果字母识别过程基于阿拉伯语脚本数据集,那么这个特征使阿拉伯语书写更具挑战性。这个阿拉伯语脚本已经在一个总计16800个的数据集中呈现,每个数据集代表从alif到yes的一类hijaiyah字母,每个类包含600个数据。使用集成方法可以提高所用数据的准确性。通过同时使用多种算法,集成技术可以提高机器学习得分的水平或结果。本研究的主要目的是评估集成方法分类器在手写阿拉伯字符数据集上的性能。该分类器采用集成方法,应用所提出的软投票,提供SVM、Random Forest和Decision Tree三种机器学习算法的多类分类。这个研究过程产生的投票分类器的准确率值为0.988和几个
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of the Ensemble Method Classifier's Performance on Handwritten Arabic Characters Dataset
Arabic character handwriting is one of the patterns and characteristics of each person's writing. This characteristic makes Arabic writing more challenging if the letter recognition process is based on a dataset of Arabic scripts. This Arabic script has been presented in a dataset totaling 16800, each representing a class of hijaiyah letters starting from alif to yes, consisting of 600 data for each class. The accuracy of the data used can be increased using the ensemble method. By using multiple algorithms at simultaneously, the ensemble technique can raise the level or result of a score in machine learning. This study's primary goal is to evaluate the ensemble method classifier's performance on datasets of handwritten Arabic characters. The classifier uses the ensemble method by applying the proposed soft voting to provide a multiclass classification of three machine learning algorithms, namely, SVM, Random Forest, and Decision Tree for classification. This research process produces an accuracy value for the voting classifier of 0.988 and several
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信