{"title":"外置干燥器石灰窑煅烧过程的动态CFD建模","authors":"Jarod Ryan, M. Bussman, Nikolai DeMartini","doi":"10.32964/tj22.8.520","DOIUrl":null,"url":null,"abstract":"Mid-kiln ring formation is a problem in lime kilns that may be related to fluctuations in the start location of calcination. To calculate fluctuations in bed and gas temperature profiles within a lime kiln with an external dryer, a dynamic two-dimensional (2D) axisymmetric computational fluid dynamics (CFD) gas model with a methane burner implemented in ANSYS Fluent, coupled by mass and heat balances to a one-dimensional (1D) bed model, was developed. The dynamic model was used to calculate changes in the location where calcination starts with fluctuations in operational conditions using pulp mill data. \n This model simulates radiative, convective, and conductive heat transfer between the gas, wall, and bed to determine the axial bed temperature in the kiln. The calcination reaction is described using a shrinking core model that allows for the prediction of the location at which calcination begins and the degree of calcination achieved. The solid motion within the kiln is modeled using Kramer’s equation modified for transient response. \n Steady-state and dynamic simulation results were compared to data from an industrial dry lime kiln, and good agreement was found. A sensitivity analysis was also performed to provide insight on how operating conditions and model variables impact the calcination location and degree of calcination. Of the variables examined, the fuel rate and the feed temperature had the largest impact on both the calcination location and degree of calcination in the kiln. Model predictions of a period of ring formation in the industrial kiln showed that the start location of calcination fluctuated by more than 2 m on either side of the mean of regular operation, warranting further investigation of the importance of these fluctuations on mid-kiln ring formation.","PeriodicalId":22255,"journal":{"name":"Tappi Journal","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic CFD modeling of calcination in a rotary lime kiln with an external dryer\",\"authors\":\"Jarod Ryan, M. Bussman, Nikolai DeMartini\",\"doi\":\"10.32964/tj22.8.520\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mid-kiln ring formation is a problem in lime kilns that may be related to fluctuations in the start location of calcination. To calculate fluctuations in bed and gas temperature profiles within a lime kiln with an external dryer, a dynamic two-dimensional (2D) axisymmetric computational fluid dynamics (CFD) gas model with a methane burner implemented in ANSYS Fluent, coupled by mass and heat balances to a one-dimensional (1D) bed model, was developed. The dynamic model was used to calculate changes in the location where calcination starts with fluctuations in operational conditions using pulp mill data. \\n This model simulates radiative, convective, and conductive heat transfer between the gas, wall, and bed to determine the axial bed temperature in the kiln. The calcination reaction is described using a shrinking core model that allows for the prediction of the location at which calcination begins and the degree of calcination achieved. The solid motion within the kiln is modeled using Kramer’s equation modified for transient response. \\n Steady-state and dynamic simulation results were compared to data from an industrial dry lime kiln, and good agreement was found. A sensitivity analysis was also performed to provide insight on how operating conditions and model variables impact the calcination location and degree of calcination. Of the variables examined, the fuel rate and the feed temperature had the largest impact on both the calcination location and degree of calcination in the kiln. Model predictions of a period of ring formation in the industrial kiln showed that the start location of calcination fluctuated by more than 2 m on either side of the mean of regular operation, warranting further investigation of the importance of these fluctuations on mid-kiln ring formation.\",\"PeriodicalId\":22255,\"journal\":{\"name\":\"Tappi Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tappi Journal\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.32964/tj22.8.520\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, PAPER & WOOD\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tappi Journal","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.32964/tj22.8.520","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
Dynamic CFD modeling of calcination in a rotary lime kiln with an external dryer
Mid-kiln ring formation is a problem in lime kilns that may be related to fluctuations in the start location of calcination. To calculate fluctuations in bed and gas temperature profiles within a lime kiln with an external dryer, a dynamic two-dimensional (2D) axisymmetric computational fluid dynamics (CFD) gas model with a methane burner implemented in ANSYS Fluent, coupled by mass and heat balances to a one-dimensional (1D) bed model, was developed. The dynamic model was used to calculate changes in the location where calcination starts with fluctuations in operational conditions using pulp mill data.
This model simulates radiative, convective, and conductive heat transfer between the gas, wall, and bed to determine the axial bed temperature in the kiln. The calcination reaction is described using a shrinking core model that allows for the prediction of the location at which calcination begins and the degree of calcination achieved. The solid motion within the kiln is modeled using Kramer’s equation modified for transient response.
Steady-state and dynamic simulation results were compared to data from an industrial dry lime kiln, and good agreement was found. A sensitivity analysis was also performed to provide insight on how operating conditions and model variables impact the calcination location and degree of calcination. Of the variables examined, the fuel rate and the feed temperature had the largest impact on both the calcination location and degree of calcination in the kiln. Model predictions of a period of ring formation in the industrial kiln showed that the start location of calcination fluctuated by more than 2 m on either side of the mean of regular operation, warranting further investigation of the importance of these fluctuations on mid-kiln ring formation.
期刊介绍:
An internationally recognized technical publication for over 60 years, TAPPI Journal (TJ) publishes the latest and most relevant research on the forest products and related industries. A stringent peer-review process and distinguished editorial board of academic and industry experts set TAPPI Journal apart as a reliable source for impactful basic and applied research and technical reviews.
Available at no charge to TAPPI members, each issue of TAPPI Journal features research in pulp, paper, packaging, tissue, nonwovens, converting, bioenergy, nanotechnology or other innovative cellulosic-based products and technologies. Publishing in TAPPI Journal delivers your research to a global audience of colleagues, peers and employers.