H. Lyckeskog, Cecilia Mattsson, L. Olausson, S. Andersson, Lennart Vamling, H. Theliander
{"title":"亚临界水中木质素转化生物油的加速老化","authors":"H. Lyckeskog, Cecilia Mattsson, L. Olausson, S. Andersson, Lennart Vamling, H. Theliander","doi":"10.32964/TJ16.3.123","DOIUrl":null,"url":null,"abstract":"Accelerated aging of bio-oil derived from lignin was investigated at different aging temperatures (50 degrees C and 80 degrees C) and times (1 hour, 1 day, 1 week, and 1 month). The bio-oil used was produced by the hydrothermal liquefaction of kraft lignin, using phenol as the capping agent, and base (potassium carbonate and potassium hydroxide) and zirconium dioxide as the catalytic system in subcritical water. Elemental composition, molecular weight (by using gel permeation chromatography), and chemical composition (by using gas chromatography-mass spectrometry and 2D nuclear magnetic resonance [18.8 T, DMSO-d(6)]) of the bio-oil were measured to gain better understanding of the changes that occurred after being subjected to an accelerated aging process. The lignin-derived hydrothermal liquefaction bio-oil was quite stable compared with biomass-pyrolysis bio-oil. The yield of the low molecular weight fraction (light oil) decreased from 64.1% to 58.1% and that of tetrahydrofuran insoluble fraction increased from 16.5% to 22.2% after aging at 80 degrees C for 1 month. Phenol and phenolic dimers (Ar-CH2-Ar) had high reactivity compared with other aromatic substituents (i.e., methoxyl and aldehyde groups); these may participate in the polymerization/condensation reactions in the hydrothermal liquefaction bio-oil during accelerated aging. Moreover, the 2D heteronuclear single quantum coherence nuclear magnetic resonance spectra of the high molecular weight fraction (heavy oil) in the aged raw oil in the aromatic region showed that the structure of this fraction was a combination of phenol-alkyl patterns, and the guaiacol cross-peaks of Ar-2, Ar-5, and Ar-6 after aging indicate that a new polymer was formed during the aging process. Application: Pulp mill personnel can use this information when considering technology to extract lignin from black liquor and process it further into bio-oil.","PeriodicalId":22255,"journal":{"name":"Tappi Journal","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Accelerated aging of bio-oil from lignin conversion in subcritical water\",\"authors\":\"H. Lyckeskog, Cecilia Mattsson, L. Olausson, S. Andersson, Lennart Vamling, H. Theliander\",\"doi\":\"10.32964/TJ16.3.123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accelerated aging of bio-oil derived from lignin was investigated at different aging temperatures (50 degrees C and 80 degrees C) and times (1 hour, 1 day, 1 week, and 1 month). The bio-oil used was produced by the hydrothermal liquefaction of kraft lignin, using phenol as the capping agent, and base (potassium carbonate and potassium hydroxide) and zirconium dioxide as the catalytic system in subcritical water. Elemental composition, molecular weight (by using gel permeation chromatography), and chemical composition (by using gas chromatography-mass spectrometry and 2D nuclear magnetic resonance [18.8 T, DMSO-d(6)]) of the bio-oil were measured to gain better understanding of the changes that occurred after being subjected to an accelerated aging process. The lignin-derived hydrothermal liquefaction bio-oil was quite stable compared with biomass-pyrolysis bio-oil. The yield of the low molecular weight fraction (light oil) decreased from 64.1% to 58.1% and that of tetrahydrofuran insoluble fraction increased from 16.5% to 22.2% after aging at 80 degrees C for 1 month. Phenol and phenolic dimers (Ar-CH2-Ar) had high reactivity compared with other aromatic substituents (i.e., methoxyl and aldehyde groups); these may participate in the polymerization/condensation reactions in the hydrothermal liquefaction bio-oil during accelerated aging. Moreover, the 2D heteronuclear single quantum coherence nuclear magnetic resonance spectra of the high molecular weight fraction (heavy oil) in the aged raw oil in the aromatic region showed that the structure of this fraction was a combination of phenol-alkyl patterns, and the guaiacol cross-peaks of Ar-2, Ar-5, and Ar-6 after aging indicate that a new polymer was formed during the aging process. Application: Pulp mill personnel can use this information when considering technology to extract lignin from black liquor and process it further into bio-oil.\",\"PeriodicalId\":22255,\"journal\":{\"name\":\"Tappi Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tappi Journal\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.32964/TJ16.3.123\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, PAPER & WOOD\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tappi Journal","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.32964/TJ16.3.123","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
Accelerated aging of bio-oil from lignin conversion in subcritical water
Accelerated aging of bio-oil derived from lignin was investigated at different aging temperatures (50 degrees C and 80 degrees C) and times (1 hour, 1 day, 1 week, and 1 month). The bio-oil used was produced by the hydrothermal liquefaction of kraft lignin, using phenol as the capping agent, and base (potassium carbonate and potassium hydroxide) and zirconium dioxide as the catalytic system in subcritical water. Elemental composition, molecular weight (by using gel permeation chromatography), and chemical composition (by using gas chromatography-mass spectrometry and 2D nuclear magnetic resonance [18.8 T, DMSO-d(6)]) of the bio-oil were measured to gain better understanding of the changes that occurred after being subjected to an accelerated aging process. The lignin-derived hydrothermal liquefaction bio-oil was quite stable compared with biomass-pyrolysis bio-oil. The yield of the low molecular weight fraction (light oil) decreased from 64.1% to 58.1% and that of tetrahydrofuran insoluble fraction increased from 16.5% to 22.2% after aging at 80 degrees C for 1 month. Phenol and phenolic dimers (Ar-CH2-Ar) had high reactivity compared with other aromatic substituents (i.e., methoxyl and aldehyde groups); these may participate in the polymerization/condensation reactions in the hydrothermal liquefaction bio-oil during accelerated aging. Moreover, the 2D heteronuclear single quantum coherence nuclear magnetic resonance spectra of the high molecular weight fraction (heavy oil) in the aged raw oil in the aromatic region showed that the structure of this fraction was a combination of phenol-alkyl patterns, and the guaiacol cross-peaks of Ar-2, Ar-5, and Ar-6 after aging indicate that a new polymer was formed during the aging process. Application: Pulp mill personnel can use this information when considering technology to extract lignin from black liquor and process it further into bio-oil.
期刊介绍:
An internationally recognized technical publication for over 60 years, TAPPI Journal (TJ) publishes the latest and most relevant research on the forest products and related industries. A stringent peer-review process and distinguished editorial board of academic and industry experts set TAPPI Journal apart as a reliable source for impactful basic and applied research and technical reviews.
Available at no charge to TAPPI members, each issue of TAPPI Journal features research in pulp, paper, packaging, tissue, nonwovens, converting, bioenergy, nanotechnology or other innovative cellulosic-based products and technologies. Publishing in TAPPI Journal delivers your research to a global audience of colleagues, peers and employers.