{"title":"硫酸盐漂白废水的生化甲烷势及其与其他厂内废水的共溶","authors":"T. Fitamo, O. Dahl, E. Master, T. Meyer","doi":"10.32964/TJ15.2.80","DOIUrl":null,"url":null,"abstract":"A biochemical methane potential assay was conducted to investigate the anaerobic digestibility of bleaching effluent from hardwood kraft pulping and the potential of codigestion with other effluents from an integrated pulp and paper mill. Four in-mill streams were tested individually and in combination: total bleaching effluent, alkaline bleaching effluent, kraft evaporator condensate, and chemithermomechanical pulping effluent. The total bleaching effluent, consisting of the chlorine dioxide bleaching and alkaline bleaching effluents, exhibited the highest potential for organic matter degradation and methane generation. Chemical oxygen demand (COD) removal ranged from 57%-76%, and methane generation was 220-280 mL/g COD contained in the wastewater, depending on the degree of dilution. When codigestion was tested, the composite consisting of total bleaching effluent, chemithermomechanical pulping effluent, and kraft condensate was most efficient in terms of COD removal (51%) and methane generation (200 mL/g COD contained in the wastewater). The total bleaching effluent is the largest contributor to the overall amount of wastewater at this mill; it contains relatively low concentrations of anaerobic inhibitors such as adsorbable organic halogens (36 mg/L), total sulfur (170 mg/L), and resin and fatty acids (3.2 mg/L). Therefore, the total bleaching effluent from hardwood kraft pulping may be considered for full-scale anaerobic wastewater treatment, either as a singular stream or as part of a composite stream including other in-mill effluents.","PeriodicalId":22255,"journal":{"name":"Tappi Journal","volume":"15 1","pages":"80-88"},"PeriodicalIF":0.6000,"publicationDate":"2016-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Biochemical methane potential of kraft bleaching effluent and codigestion with other in-mill streams\",\"authors\":\"T. Fitamo, O. Dahl, E. Master, T. Meyer\",\"doi\":\"10.32964/TJ15.2.80\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A biochemical methane potential assay was conducted to investigate the anaerobic digestibility of bleaching effluent from hardwood kraft pulping and the potential of codigestion with other effluents from an integrated pulp and paper mill. Four in-mill streams were tested individually and in combination: total bleaching effluent, alkaline bleaching effluent, kraft evaporator condensate, and chemithermomechanical pulping effluent. The total bleaching effluent, consisting of the chlorine dioxide bleaching and alkaline bleaching effluents, exhibited the highest potential for organic matter degradation and methane generation. Chemical oxygen demand (COD) removal ranged from 57%-76%, and methane generation was 220-280 mL/g COD contained in the wastewater, depending on the degree of dilution. When codigestion was tested, the composite consisting of total bleaching effluent, chemithermomechanical pulping effluent, and kraft condensate was most efficient in terms of COD removal (51%) and methane generation (200 mL/g COD contained in the wastewater). The total bleaching effluent is the largest contributor to the overall amount of wastewater at this mill; it contains relatively low concentrations of anaerobic inhibitors such as adsorbable organic halogens (36 mg/L), total sulfur (170 mg/L), and resin and fatty acids (3.2 mg/L). Therefore, the total bleaching effluent from hardwood kraft pulping may be considered for full-scale anaerobic wastewater treatment, either as a singular stream or as part of a composite stream including other in-mill effluents.\",\"PeriodicalId\":22255,\"journal\":{\"name\":\"Tappi Journal\",\"volume\":\"15 1\",\"pages\":\"80-88\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2016-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tappi Journal\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.32964/TJ15.2.80\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, PAPER & WOOD\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tappi Journal","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.32964/TJ15.2.80","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
Biochemical methane potential of kraft bleaching effluent and codigestion with other in-mill streams
A biochemical methane potential assay was conducted to investigate the anaerobic digestibility of bleaching effluent from hardwood kraft pulping and the potential of codigestion with other effluents from an integrated pulp and paper mill. Four in-mill streams were tested individually and in combination: total bleaching effluent, alkaline bleaching effluent, kraft evaporator condensate, and chemithermomechanical pulping effluent. The total bleaching effluent, consisting of the chlorine dioxide bleaching and alkaline bleaching effluents, exhibited the highest potential for organic matter degradation and methane generation. Chemical oxygen demand (COD) removal ranged from 57%-76%, and methane generation was 220-280 mL/g COD contained in the wastewater, depending on the degree of dilution. When codigestion was tested, the composite consisting of total bleaching effluent, chemithermomechanical pulping effluent, and kraft condensate was most efficient in terms of COD removal (51%) and methane generation (200 mL/g COD contained in the wastewater). The total bleaching effluent is the largest contributor to the overall amount of wastewater at this mill; it contains relatively low concentrations of anaerobic inhibitors such as adsorbable organic halogens (36 mg/L), total sulfur (170 mg/L), and resin and fatty acids (3.2 mg/L). Therefore, the total bleaching effluent from hardwood kraft pulping may be considered for full-scale anaerobic wastewater treatment, either as a singular stream or as part of a composite stream including other in-mill effluents.
期刊介绍:
An internationally recognized technical publication for over 60 years, TAPPI Journal (TJ) publishes the latest and most relevant research on the forest products and related industries. A stringent peer-review process and distinguished editorial board of academic and industry experts set TAPPI Journal apart as a reliable source for impactful basic and applied research and technical reviews.
Available at no charge to TAPPI members, each issue of TAPPI Journal features research in pulp, paper, packaging, tissue, nonwovens, converting, bioenergy, nanotechnology or other innovative cellulosic-based products and technologies. Publishing in TAPPI Journal delivers your research to a global audience of colleagues, peers and employers.