基于遗传规划的标签信息获取带有顶点标签和通配符的标签树模式方法

Shunsuke Yokoyama, T. Miyahara, Yusuke Suzuki, Tomoyuki Uchida, T. Kuboyama
{"title":"基于遗传规划的标签信息获取带有顶点标签和通配符的标签树模式方法","authors":"Shunsuke Yokoyama, T. Miyahara, Yusuke Suzuki, Tomoyuki Uchida, T. Kuboyama","doi":"10.29007/tfgn","DOIUrl":null,"url":null,"abstract":"Machine learning and data mining from tree structured data are studied intensively. In this paper, as tree structured patterns we use tag tree patterns with vertex and edge labels and wildcards in order to represent label connecting relation of vertices and edges in tree structured data. We propose an evolutionary learning method based on Genetic Programming for acquiring characteristic tag tree patterns with vertex and edge labels and wildcards from positive and negative tree structured data. By using label information, that is, label connecting relation of positive examples, as inappropriate individuals we can exclude tag tree patterns that do not satisfy label connecting relation of positive examples. We report experimental results on our evolutionary learning method and show the effectiveness of using label connecting relation of positive examples.","PeriodicalId":93549,"journal":{"name":"EPiC series in computing","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using Label Information in a Genetic Programming Based Method for Acquiring Tag Tree Patterns with Vertex Labels and Wildcards\",\"authors\":\"Shunsuke Yokoyama, T. Miyahara, Yusuke Suzuki, Tomoyuki Uchida, T. Kuboyama\",\"doi\":\"10.29007/tfgn\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine learning and data mining from tree structured data are studied intensively. In this paper, as tree structured patterns we use tag tree patterns with vertex and edge labels and wildcards in order to represent label connecting relation of vertices and edges in tree structured data. We propose an evolutionary learning method based on Genetic Programming for acquiring characteristic tag tree patterns with vertex and edge labels and wildcards from positive and negative tree structured data. By using label information, that is, label connecting relation of positive examples, as inappropriate individuals we can exclude tag tree patterns that do not satisfy label connecting relation of positive examples. We report experimental results on our evolutionary learning method and show the effectiveness of using label connecting relation of positive examples.\",\"PeriodicalId\":93549,\"journal\":{\"name\":\"EPiC series in computing\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EPiC series in computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29007/tfgn\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPiC series in computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29007/tfgn","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

深入研究了机器学习和树状结构数据的数据挖掘。作为树形结构模式,我们使用带有顶点和边标签和通配符的标记树模式来表示树形结构数据中顶点和边的标签连接关系。提出了一种基于遗传规划的进化学习方法,用于从正、负树结构数据中获取具有顶点、边标记和通配符的特征标签树模式。利用标签信息,即正例的标签连接关系,作为不合适的个体,我们可以排除不满足正例标签连接关系的标签树模式。我们报告了进化学习方法的实验结果,并证明了使用正例标签连接关系的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using Label Information in a Genetic Programming Based Method for Acquiring Tag Tree Patterns with Vertex Labels and Wildcards
Machine learning and data mining from tree structured data are studied intensively. In this paper, as tree structured patterns we use tag tree patterns with vertex and edge labels and wildcards in order to represent label connecting relation of vertices and edges in tree structured data. We propose an evolutionary learning method based on Genetic Programming for acquiring characteristic tag tree patterns with vertex and edge labels and wildcards from positive and negative tree structured data. By using label information, that is, label connecting relation of positive examples, as inappropriate individuals we can exclude tag tree patterns that do not satisfy label connecting relation of positive examples. We report experimental results on our evolutionary learning method and show the effectiveness of using label connecting relation of positive examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信