静磁场下电磁悬浮恒压下Pd-Fe熔体的法向发射率和热容量的测量

IF 1.1 4区 工程技术 Q4 Engineering
M. Watanabe, M. Adachi, M. Uchikoshi, H. Fukuyama
{"title":"静磁场下电磁悬浮恒压下Pd-Fe熔体的法向发射率和热容量的测量","authors":"M. Watanabe, M. Adachi, M. Uchikoshi, H. Fukuyama","doi":"10.32908/hthp.v52.1423","DOIUrl":null,"url":null,"abstract":"The normal spectral emissivity at 807 and 940 nm and heat capacity at constant pressure of Pd–Fe melts were measured under electromagnetic levitation with a static magnetic field. The samples were made of Fe of mass purity 99.9985%. The present emissivity of Fe melts was relatively low compared with previously reported data using Fe with purity lower than 99.95% mass purity. The spectral emission of the Fe melts was analyzed using their normal spectral emissivity obtained from the Drude model. The excess heat capacity of Pd–Fe melts was evaluated from the measured heat capacity of Pd–Fe melts. Applying the Lupis–Elliot rule, we concluded from the obtained excess heat capacity that the enthalpy of mixing and excess entropy of the Pd–Fe melts should be negative. The composition dependence of the enthalpy of mixing, excess entropy, and excess Gibbs energy of Pd–Fe melts were evaluated using data obtained in this study and the literature.","PeriodicalId":12983,"journal":{"name":"High Temperatures-high Pressures","volume":"44 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Normal spectral emissivity and heat capacity of Pd–Fe melts measured at constant pressure under electromagnetic levitation with a static magnetic field\",\"authors\":\"M. Watanabe, M. Adachi, M. Uchikoshi, H. Fukuyama\",\"doi\":\"10.32908/hthp.v52.1423\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The normal spectral emissivity at 807 and 940 nm and heat capacity at constant pressure of Pd–Fe melts were measured under electromagnetic levitation with a static magnetic field. The samples were made of Fe of mass purity 99.9985%. The present emissivity of Fe melts was relatively low compared with previously reported data using Fe with purity lower than 99.95% mass purity. The spectral emission of the Fe melts was analyzed using their normal spectral emissivity obtained from the Drude model. The excess heat capacity of Pd–Fe melts was evaluated from the measured heat capacity of Pd–Fe melts. Applying the Lupis–Elliot rule, we concluded from the obtained excess heat capacity that the enthalpy of mixing and excess entropy of the Pd–Fe melts should be negative. The composition dependence of the enthalpy of mixing, excess entropy, and excess Gibbs energy of Pd–Fe melts were evaluated using data obtained in this study and the literature.\",\"PeriodicalId\":12983,\"journal\":{\"name\":\"High Temperatures-high Pressures\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"High Temperatures-high Pressures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.32908/hthp.v52.1423\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Temperatures-high Pressures","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.32908/hthp.v52.1423","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

在静磁场电磁悬浮作用下,测量了钯铁熔体在807和940 nm处的法向发射率和恒压下的热容量。样品由质量纯度为99.9985%的铁制成。与先前报道的纯度低于99.95%质量纯度的铁相比,目前的铁熔体发射率相对较低。利用德鲁德模型得到的法向光谱发射率对熔体的光谱发射进行了分析。通过测量钯铁熔体的热容量,对钯铁熔体的过剩热容量进行了评价。应用Lupis-Elliot规则,由得到的过剩热容可以得出钯铁熔体的混合焓和过剩熵为负的结论。使用本研究和文献中获得的数据评估了Pd-Fe熔体的混合焓、多余熵和多余吉布斯能的成分依赖性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Normal spectral emissivity and heat capacity of Pd–Fe melts measured at constant pressure under electromagnetic levitation with a static magnetic field
The normal spectral emissivity at 807 and 940 nm and heat capacity at constant pressure of Pd–Fe melts were measured under electromagnetic levitation with a static magnetic field. The samples were made of Fe of mass purity 99.9985%. The present emissivity of Fe melts was relatively low compared with previously reported data using Fe with purity lower than 99.95% mass purity. The spectral emission of the Fe melts was analyzed using their normal spectral emissivity obtained from the Drude model. The excess heat capacity of Pd–Fe melts was evaluated from the measured heat capacity of Pd–Fe melts. Applying the Lupis–Elliot rule, we concluded from the obtained excess heat capacity that the enthalpy of mixing and excess entropy of the Pd–Fe melts should be negative. The composition dependence of the enthalpy of mixing, excess entropy, and excess Gibbs energy of Pd–Fe melts were evaluated using data obtained in this study and the literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
High Temperatures-high Pressures
High Temperatures-high Pressures THERMODYNAMICS-MECHANICS
CiteScore
1.00
自引率
9.10%
发文量
6
期刊介绍: High Temperatures – High Pressures (HTHP) is an international journal publishing original peer-reviewed papers devoted to experimental and theoretical studies on thermophysical properties of matter, as well as experimental and modelling solutions for applications where control of thermophysical properties is critical, e.g. additive manufacturing. These studies deal with thermodynamic, thermal, and mechanical behaviour of materials, including transport and radiative properties. The journal provides a platform for disseminating knowledge of thermophysical properties, their measurement, their applications, equipment and techniques. HTHP covers the thermophysical properties of gases, liquids, and solids at all temperatures and under all physical conditions, with special emphasis on matter and applications under extreme conditions, e.g. high temperatures and high pressures. Additionally, HTHP publishes authoritative reviews of advances in thermophysics research, critical compilations of existing data, new technology, and industrial applications, plus book reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信