Lili Liu, Cai Chen, Linlin Shen, Gang Xu, Y. Wen, Xianshi Zeng
{"title":"γ-TiAl、DO22-Al3Ti和α2-Ti3Al二元相的结构、弹性和热力学性质","authors":"Lili Liu, Cai Chen, Linlin Shen, Gang Xu, Y. Wen, Xianshi Zeng","doi":"10.32908/hthp.v52.1133","DOIUrl":null,"url":null,"abstract":"The pressure dependence of the lattice and elastic constants of the binary precipitates γ-TiAl, DO22-Al3Ti and α2-Ti3Al are firstly investigated by using a first-principles approach. The calculated results at 0 GPa and 0 K agree well with the existing experimental and other theoretical values. Using the density-functional perturbation theory (DFPT) under the quasiharmonic approximation (QHA), the temperature and pressure dependencies of the bulk modulus, the Gibbs free energy, the thermal expansion coefficient, as well as the heat capacity at constant pressure are investigated systematically in the ranges of 0–1000 K and 0–30 GPa.","PeriodicalId":12983,"journal":{"name":"High Temperatures-high Pressures","volume":"1 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural, elastic and thermodynamic properties of the binary precipitates γ-TiAl, DO22-Al3Ti and α2-Ti3Al\",\"authors\":\"Lili Liu, Cai Chen, Linlin Shen, Gang Xu, Y. Wen, Xianshi Zeng\",\"doi\":\"10.32908/hthp.v52.1133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The pressure dependence of the lattice and elastic constants of the binary precipitates γ-TiAl, DO22-Al3Ti and α2-Ti3Al are firstly investigated by using a first-principles approach. The calculated results at 0 GPa and 0 K agree well with the existing experimental and other theoretical values. Using the density-functional perturbation theory (DFPT) under the quasiharmonic approximation (QHA), the temperature and pressure dependencies of the bulk modulus, the Gibbs free energy, the thermal expansion coefficient, as well as the heat capacity at constant pressure are investigated systematically in the ranges of 0–1000 K and 0–30 GPa.\",\"PeriodicalId\":12983,\"journal\":{\"name\":\"High Temperatures-high Pressures\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"High Temperatures-high Pressures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.32908/hthp.v52.1133\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Temperatures-high Pressures","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.32908/hthp.v52.1133","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
Structural, elastic and thermodynamic properties of the binary precipitates γ-TiAl, DO22-Al3Ti and α2-Ti3Al
The pressure dependence of the lattice and elastic constants of the binary precipitates γ-TiAl, DO22-Al3Ti and α2-Ti3Al are firstly investigated by using a first-principles approach. The calculated results at 0 GPa and 0 K agree well with the existing experimental and other theoretical values. Using the density-functional perturbation theory (DFPT) under the quasiharmonic approximation (QHA), the temperature and pressure dependencies of the bulk modulus, the Gibbs free energy, the thermal expansion coefficient, as well as the heat capacity at constant pressure are investigated systematically in the ranges of 0–1000 K and 0–30 GPa.
期刊介绍:
High Temperatures – High Pressures (HTHP) is an international journal publishing original peer-reviewed papers devoted to experimental and theoretical studies on thermophysical properties of matter, as well as experimental and modelling solutions for applications where control of thermophysical properties is critical, e.g. additive manufacturing. These studies deal with thermodynamic, thermal, and mechanical behaviour of materials, including transport and radiative properties. The journal provides a platform for disseminating knowledge of thermophysical properties, their measurement, their applications, equipment and techniques. HTHP covers the thermophysical properties of gases, liquids, and solids at all temperatures and under all physical conditions, with special emphasis on matter and applications under extreme conditions, e.g. high temperatures and high pressures. Additionally, HTHP publishes authoritative reviews of advances in thermophysics research, critical compilations of existing data, new technology, and industrial applications, plus book reviews.