{"title":"波浪型热电翅片热电回热器热电-水力性能数值研究","authors":"Na Li, Xingfei Yu, Jinhai Xu, Qiuwan Wang, T. Ma","doi":"10.32908/hthp.v49.961","DOIUrl":null,"url":null,"abstract":"A thermoelectric-hydraulic numerical model is built for thermoelectric recuperators with wavy and straight fins under large longitudinal temperature difference, and their performance is analyzed. It is found that the comprehensive performance of the wavy-fin thermoelectric recuperator is better than that of straight-fin thermoelectric recuperator. The maximum output powers of the two thermoelectric recuperators are 0.251 mW and 0.236 mW at inlet velocity of 1.7 m � s-1. When the ratio of wave height to wave length is 0.1, the maximum output power is 0.251 mW and output power per unit volume is 414.8 W � m-3. Taguchi method is used to optimize the wavy-fin thermoelectric recuperator. It is found that reducing channel width and plate thickness is beneficial to increase the output power and output power per unit volume for the wavy-fin thermoelectric recuperator. Increasing fin height and fin thickness is beneficial to the output power, but disadvantage to the output power per unit volume.","PeriodicalId":12983,"journal":{"name":"High Temperatures-high Pressures","volume":"1 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Numerical study on thermoelectric-hydraulic performance of thermoelectric recuperator with wavy thermoelectric fins\",\"authors\":\"Na Li, Xingfei Yu, Jinhai Xu, Qiuwan Wang, T. Ma\",\"doi\":\"10.32908/hthp.v49.961\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A thermoelectric-hydraulic numerical model is built for thermoelectric recuperators with wavy and straight fins under large longitudinal temperature difference, and their performance is analyzed. It is found that the comprehensive performance of the wavy-fin thermoelectric recuperator is better than that of straight-fin thermoelectric recuperator. The maximum output powers of the two thermoelectric recuperators are 0.251 mW and 0.236 mW at inlet velocity of 1.7 m � s-1. When the ratio of wave height to wave length is 0.1, the maximum output power is 0.251 mW and output power per unit volume is 414.8 W � m-3. Taguchi method is used to optimize the wavy-fin thermoelectric recuperator. It is found that reducing channel width and plate thickness is beneficial to increase the output power and output power per unit volume for the wavy-fin thermoelectric recuperator. Increasing fin height and fin thickness is beneficial to the output power, but disadvantage to the output power per unit volume.\",\"PeriodicalId\":12983,\"journal\":{\"name\":\"High Temperatures-high Pressures\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"High Temperatures-high Pressures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.32908/hthp.v49.961\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Temperatures-high Pressures","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.32908/hthp.v49.961","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1
摘要
建立了大纵向温差下波浪翅片和直翅片热电回热器的热电-水力数值模型,并对其性能进行了分析。结果表明,波翅式热电回热器的综合性能优于直翅式热电回热器。在入口速度为1.7 m μ s-1时,两个热电回热器的最大输出功率分别为0.251 mW和0.236 mW。当波高波长比为0.1时,最大输出功率为0.251 mW,单位体积输出功率为414.8 W·m-3。采用田口法对波浪鳍式热电回热器进行优化。研究发现,减小通道宽度和板厚有利于提高波鳍式热电回热器的输出功率和单位体积输出功率。增加翅片高度和厚度对输出功率有利,但对单位体积输出功率不利。
Numerical study on thermoelectric-hydraulic performance of thermoelectric recuperator with wavy thermoelectric fins
A thermoelectric-hydraulic numerical model is built for thermoelectric recuperators with wavy and straight fins under large longitudinal temperature difference, and their performance is analyzed. It is found that the comprehensive performance of the wavy-fin thermoelectric recuperator is better than that of straight-fin thermoelectric recuperator. The maximum output powers of the two thermoelectric recuperators are 0.251 mW and 0.236 mW at inlet velocity of 1.7 m � s-1. When the ratio of wave height to wave length is 0.1, the maximum output power is 0.251 mW and output power per unit volume is 414.8 W � m-3. Taguchi method is used to optimize the wavy-fin thermoelectric recuperator. It is found that reducing channel width and plate thickness is beneficial to increase the output power and output power per unit volume for the wavy-fin thermoelectric recuperator. Increasing fin height and fin thickness is beneficial to the output power, but disadvantage to the output power per unit volume.
期刊介绍:
High Temperatures – High Pressures (HTHP) is an international journal publishing original peer-reviewed papers devoted to experimental and theoretical studies on thermophysical properties of matter, as well as experimental and modelling solutions for applications where control of thermophysical properties is critical, e.g. additive manufacturing. These studies deal with thermodynamic, thermal, and mechanical behaviour of materials, including transport and radiative properties. The journal provides a platform for disseminating knowledge of thermophysical properties, their measurement, their applications, equipment and techniques. HTHP covers the thermophysical properties of gases, liquids, and solids at all temperatures and under all physical conditions, with special emphasis on matter and applications under extreme conditions, e.g. high temperatures and high pressures. Additionally, HTHP publishes authoritative reviews of advances in thermophysics research, critical compilations of existing data, new technology, and industrial applications, plus book reviews.