Daeho Kim, Jae-Myung Park, S. Nahm, Sang-Hocuk Lee
{"title":"镍基ren<s:1> N5单晶的热物理性质","authors":"Daeho Kim, Jae-Myung Park, S. Nahm, Sang-Hocuk Lee","doi":"10.32908/hthp.v50.1085","DOIUrl":null,"url":null,"abstract":"Nickel-based superalloys have been widely used for various high-temperature and high-pressure applications such as gas-turbines, power plants, and boiler housings. In this study, we report new experimental results for thermophysical properties of René N5 alloy in a temperature range of room temperature to 1000 °C. Especially, specimens of René N5 alloy were studied in directions [001] and [111] from the same batch of commercial alloy bar. Thermal diffusivity, specific heat capacity, thermal conductivity, and coefficient of thermal expansion (CTE) with correction data of density were evaluated for each measurement method, and detailed data are provided in tables. Thermal conductivity of the [001] alloy had a higher trend than that of the [111] alloy, with relative deviation of 0.7% to 4.8%. Coefficient of thermal expansion values showed good agreement (within 5.3%) and had a curve similar to that of the specific heat capacity. All thermophysical property results were described and compared with those of single crystal alloy of CMSX-4, René N5 and conventional cast René 80 of reference data. The microstructures of alloys [001] and [111] of René N5 were observed by SEM and found to have phase of γ/γ′, which affects the thermophysical properties.","PeriodicalId":12983,"journal":{"name":"High Temperatures-high Pressures","volume":"61 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Thermophysical properties of nickel-based single crystal of René N5\",\"authors\":\"Daeho Kim, Jae-Myung Park, S. Nahm, Sang-Hocuk Lee\",\"doi\":\"10.32908/hthp.v50.1085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nickel-based superalloys have been widely used for various high-temperature and high-pressure applications such as gas-turbines, power plants, and boiler housings. In this study, we report new experimental results for thermophysical properties of René N5 alloy in a temperature range of room temperature to 1000 °C. Especially, specimens of René N5 alloy were studied in directions [001] and [111] from the same batch of commercial alloy bar. Thermal diffusivity, specific heat capacity, thermal conductivity, and coefficient of thermal expansion (CTE) with correction data of density were evaluated for each measurement method, and detailed data are provided in tables. Thermal conductivity of the [001] alloy had a higher trend than that of the [111] alloy, with relative deviation of 0.7% to 4.8%. Coefficient of thermal expansion values showed good agreement (within 5.3%) and had a curve similar to that of the specific heat capacity. All thermophysical property results were described and compared with those of single crystal alloy of CMSX-4, René N5 and conventional cast René 80 of reference data. The microstructures of alloys [001] and [111] of René N5 were observed by SEM and found to have phase of γ/γ′, which affects the thermophysical properties.\",\"PeriodicalId\":12983,\"journal\":{\"name\":\"High Temperatures-high Pressures\",\"volume\":\"61 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"High Temperatures-high Pressures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.32908/hthp.v50.1085\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Temperatures-high Pressures","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.32908/hthp.v50.1085","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
Thermophysical properties of nickel-based single crystal of René N5
Nickel-based superalloys have been widely used for various high-temperature and high-pressure applications such as gas-turbines, power plants, and boiler housings. In this study, we report new experimental results for thermophysical properties of René N5 alloy in a temperature range of room temperature to 1000 °C. Especially, specimens of René N5 alloy were studied in directions [001] and [111] from the same batch of commercial alloy bar. Thermal diffusivity, specific heat capacity, thermal conductivity, and coefficient of thermal expansion (CTE) with correction data of density were evaluated for each measurement method, and detailed data are provided in tables. Thermal conductivity of the [001] alloy had a higher trend than that of the [111] alloy, with relative deviation of 0.7% to 4.8%. Coefficient of thermal expansion values showed good agreement (within 5.3%) and had a curve similar to that of the specific heat capacity. All thermophysical property results were described and compared with those of single crystal alloy of CMSX-4, René N5 and conventional cast René 80 of reference data. The microstructures of alloys [001] and [111] of René N5 were observed by SEM and found to have phase of γ/γ′, which affects the thermophysical properties.
期刊介绍:
High Temperatures – High Pressures (HTHP) is an international journal publishing original peer-reviewed papers devoted to experimental and theoretical studies on thermophysical properties of matter, as well as experimental and modelling solutions for applications where control of thermophysical properties is critical, e.g. additive manufacturing. These studies deal with thermodynamic, thermal, and mechanical behaviour of materials, including transport and radiative properties. The journal provides a platform for disseminating knowledge of thermophysical properties, their measurement, their applications, equipment and techniques. HTHP covers the thermophysical properties of gases, liquids, and solids at all temperatures and under all physical conditions, with special emphasis on matter and applications under extreme conditions, e.g. high temperatures and high pressures. Additionally, HTHP publishes authoritative reviews of advances in thermophysics research, critical compilations of existing data, new technology, and industrial applications, plus book reviews.