Rosario Pacheco-Marin, Carolina Caballero-Cordero, Jorge Arturo Arciniega-González, E. Álvarez-Buylla, Juan Carlos Martínez-García
{"title":"通过数学建模和计算机分析,揭示高血压与Covid - 19患者炎症反应之间的相互依存关系","authors":"Rosario Pacheco-Marin, Carolina Caballero-Cordero, Jorge Arturo Arciniega-González, E. Álvarez-Buylla, Juan Carlos Martínez-García","doi":"10.29007/b5v4","DOIUrl":null,"url":null,"abstract":"We explore here the systems-based regulatory mechanisms that determine human blood pressure patterns. This in the context of the reported negative association between hypertension and COVID-19 disease. We are particularly interested in the key role that plays angiotensin converting enzyme 2 (ACE2), one of the first identified receptors that enable the entry of the SARS-CoV-2 virus into a cell. Taking into account the two main systems involved in the regulation of blood pressure, that is, the Renin-Angiotensin system and the Kallikrein-Kinin system, we follow a Bottom-Up systems biology modeling approach in order to built the discrete Boolean model of the gene regulatory network that underlies both the typical hypertensive phenotype and the hypotensive/normotensive phenotype. These phenotypes correspond to the dynamic attractors of the regulatory network modeled on the basis of publicly available experimental information. Our model recovers the observed phenotypes and shows the key role played by the inflammatory response in the emergence of hypertension.","PeriodicalId":93549,"journal":{"name":"EPiC series in computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uncovering the interdependence between hypertension and the inflammatory response for the patient affected by Covid 19 through mathematical modeling and computer-based analysis\",\"authors\":\"Rosario Pacheco-Marin, Carolina Caballero-Cordero, Jorge Arturo Arciniega-González, E. Álvarez-Buylla, Juan Carlos Martínez-García\",\"doi\":\"10.29007/b5v4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We explore here the systems-based regulatory mechanisms that determine human blood pressure patterns. This in the context of the reported negative association between hypertension and COVID-19 disease. We are particularly interested in the key role that plays angiotensin converting enzyme 2 (ACE2), one of the first identified receptors that enable the entry of the SARS-CoV-2 virus into a cell. Taking into account the two main systems involved in the regulation of blood pressure, that is, the Renin-Angiotensin system and the Kallikrein-Kinin system, we follow a Bottom-Up systems biology modeling approach in order to built the discrete Boolean model of the gene regulatory network that underlies both the typical hypertensive phenotype and the hypotensive/normotensive phenotype. These phenotypes correspond to the dynamic attractors of the regulatory network modeled on the basis of publicly available experimental information. Our model recovers the observed phenotypes and shows the key role played by the inflammatory response in the emergence of hypertension.\",\"PeriodicalId\":93549,\"journal\":{\"name\":\"EPiC series in computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EPiC series in computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29007/b5v4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPiC series in computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29007/b5v4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Uncovering the interdependence between hypertension and the inflammatory response for the patient affected by Covid 19 through mathematical modeling and computer-based analysis
We explore here the systems-based regulatory mechanisms that determine human blood pressure patterns. This in the context of the reported negative association between hypertension and COVID-19 disease. We are particularly interested in the key role that plays angiotensin converting enzyme 2 (ACE2), one of the first identified receptors that enable the entry of the SARS-CoV-2 virus into a cell. Taking into account the two main systems involved in the regulation of blood pressure, that is, the Renin-Angiotensin system and the Kallikrein-Kinin system, we follow a Bottom-Up systems biology modeling approach in order to built the discrete Boolean model of the gene regulatory network that underlies both the typical hypertensive phenotype and the hypotensive/normotensive phenotype. These phenotypes correspond to the dynamic attractors of the regulatory network modeled on the basis of publicly available experimental information. Our model recovers the observed phenotypes and shows the key role played by the inflammatory response in the emergence of hypertension.