悬臂欧拉-伯努利梁载质点自由振动的扫描电镜研究

IF 0.7 Q3 ENGINEERING, MULTIDISCIPLINARY
Saida Hamioud
{"title":"悬臂欧拉-伯努利梁载质点自由振动的扫描电镜研究","authors":"Saida Hamioud","doi":"10.31803/tg-20210807191129","DOIUrl":null,"url":null,"abstract":"The objective of this research is to study the free vibration of a cantilever Euler-Bernoulli beam carrying a point mass with moment of inertia at the free end using the spectral element method (SEM). Typically, the shape (or interpolation) functions used in the Spectral element method are derived from exact solutions of the governing differential equations of motion in the frequency domain. The beam was discretized by a single spectral element which was connected by a point mass at the free end. The dynamic stiffness matrix of the beam is formulated in frequency domain by considering compatibility conditions at the additional mass position. Then, the first three natural frequencies of the cantilever beam are determined. After the validation of the spectral element method, the influence of the non-dimensional mass parameter and the non-dimensional mass moment of inertia on the first three natural frequencies and shape mode are examined.","PeriodicalId":43419,"journal":{"name":"TEHNICKI GLASNIK-TECHNICAL JOURNAL","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2022-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Free Vibration of a Cantilever Euler-Bernoulli Beam Carrying a Point Mass by Using SEM\",\"authors\":\"Saida Hamioud\",\"doi\":\"10.31803/tg-20210807191129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The objective of this research is to study the free vibration of a cantilever Euler-Bernoulli beam carrying a point mass with moment of inertia at the free end using the spectral element method (SEM). Typically, the shape (or interpolation) functions used in the Spectral element method are derived from exact solutions of the governing differential equations of motion in the frequency domain. The beam was discretized by a single spectral element which was connected by a point mass at the free end. The dynamic stiffness matrix of the beam is formulated in frequency domain by considering compatibility conditions at the additional mass position. Then, the first three natural frequencies of the cantilever beam are determined. After the validation of the spectral element method, the influence of the non-dimensional mass parameter and the non-dimensional mass moment of inertia on the first three natural frequencies and shape mode are examined.\",\"PeriodicalId\":43419,\"journal\":{\"name\":\"TEHNICKI GLASNIK-TECHNICAL JOURNAL\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"TEHNICKI GLASNIK-TECHNICAL JOURNAL\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31803/tg-20210807191129\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"TEHNICKI GLASNIK-TECHNICAL JOURNAL","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31803/tg-20210807191129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究的目的是利用谱元法(SEM)研究悬臂欧拉-伯努利梁的自由振动,该梁在自由端携带有惯性矩的点质量。通常,谱元方法中使用的形状(或插值)函数是由控制运动微分方程在频域的精确解导出的。用单谱元将光束离散,单谱元在自由端由一个质点连接。考虑附加质量位置的协调条件,在频域建立了梁的动刚度矩阵。然后,确定了悬臂梁的前三个固有频率。在对谱元法进行验证后,考察了无量纲质量参数和无量纲质量转动惯量对前三个固有频率和振型的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Free Vibration of a Cantilever Euler-Bernoulli Beam Carrying a Point Mass by Using SEM
The objective of this research is to study the free vibration of a cantilever Euler-Bernoulli beam carrying a point mass with moment of inertia at the free end using the spectral element method (SEM). Typically, the shape (or interpolation) functions used in the Spectral element method are derived from exact solutions of the governing differential equations of motion in the frequency domain. The beam was discretized by a single spectral element which was connected by a point mass at the free end. The dynamic stiffness matrix of the beam is formulated in frequency domain by considering compatibility conditions at the additional mass position. Then, the first three natural frequencies of the cantilever beam are determined. After the validation of the spectral element method, the influence of the non-dimensional mass parameter and the non-dimensional mass moment of inertia on the first three natural frequencies and shape mode are examined.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
TEHNICKI GLASNIK-TECHNICAL JOURNAL
TEHNICKI GLASNIK-TECHNICAL JOURNAL ENGINEERING, MULTIDISCIPLINARY-
CiteScore
1.50
自引率
8.30%
发文量
85
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信