基于脑电图的神经网络模型情绪预测

IF 0.7 Q3 ENGINEERING, MULTIDISCIPLINARY
F. Bardak, M. Seyman, Feyzullah Temurtaş
{"title":"基于脑电图的神经网络模型情绪预测","authors":"F. Bardak, M. Seyman, Feyzullah Temurtaş","doi":"10.31803/tg-20220330064309","DOIUrl":null,"url":null,"abstract":"The term \"emotion\" refers to an individual's response to an event, person, or condition. In recent years, there has been an increase in the number of papers that have studied emotion estimation. In this study, a dataset based on three different emotions, utilized to classify feelings using EEG brainwaves, has been analysed. In the dataset, six film clips have been used to elicit positive and negative emotions from a male and a female. However, there has not been a trigger to elicit a neutral mood. Various classification approaches have been used to classify the dataset, including MLP, SVM, PNN, KNN, and decision tree methods. The Bagged Tree technique which is utilized for the first time has been achieved a 98.60 percent success rate in this study, according to the researchers. In addition, the dataset has been classified using the PNN approach, and achieved a success rate of 94.32 percent.","PeriodicalId":43419,"journal":{"name":"TEHNICKI GLASNIK-TECHNICAL JOURNAL","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EEG Based Emotion Prediction with Neural Network Models\",\"authors\":\"F. Bardak, M. Seyman, Feyzullah Temurtaş\",\"doi\":\"10.31803/tg-20220330064309\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The term \\\"emotion\\\" refers to an individual's response to an event, person, or condition. In recent years, there has been an increase in the number of papers that have studied emotion estimation. In this study, a dataset based on three different emotions, utilized to classify feelings using EEG brainwaves, has been analysed. In the dataset, six film clips have been used to elicit positive and negative emotions from a male and a female. However, there has not been a trigger to elicit a neutral mood. Various classification approaches have been used to classify the dataset, including MLP, SVM, PNN, KNN, and decision tree methods. The Bagged Tree technique which is utilized for the first time has been achieved a 98.60 percent success rate in this study, according to the researchers. In addition, the dataset has been classified using the PNN approach, and achieved a success rate of 94.32 percent.\",\"PeriodicalId\":43419,\"journal\":{\"name\":\"TEHNICKI GLASNIK-TECHNICAL JOURNAL\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"TEHNICKI GLASNIK-TECHNICAL JOURNAL\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31803/tg-20220330064309\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"TEHNICKI GLASNIK-TECHNICAL JOURNAL","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31803/tg-20220330064309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

“情绪”一词指的是个人对一件事、一个人或一种情况的反应。近年来,研究情绪估计的论文数量有所增加。在这项研究中,研究人员分析了基于三种不同情绪的数据集,利用脑电图脑电波对情绪进行分类。在数据集中,6个电影片段被用来引发男性和女性的积极和消极情绪。然而,目前还没有触发中性情绪的因素。各种分类方法已被用于对数据集进行分类,包括MLP、SVM、PNN、KNN和决策树方法。据研究人员介绍,首次使用的套袋树技术在本次研究中取得了98.60%的成功率。此外,使用PNN方法对数据集进行分类,并取得了94.32%的成功率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
EEG Based Emotion Prediction with Neural Network Models
The term "emotion" refers to an individual's response to an event, person, or condition. In recent years, there has been an increase in the number of papers that have studied emotion estimation. In this study, a dataset based on three different emotions, utilized to classify feelings using EEG brainwaves, has been analysed. In the dataset, six film clips have been used to elicit positive and negative emotions from a male and a female. However, there has not been a trigger to elicit a neutral mood. Various classification approaches have been used to classify the dataset, including MLP, SVM, PNN, KNN, and decision tree methods. The Bagged Tree technique which is utilized for the first time has been achieved a 98.60 percent success rate in this study, according to the researchers. In addition, the dataset has been classified using the PNN approach, and achieved a success rate of 94.32 percent.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
TEHNICKI GLASNIK-TECHNICAL JOURNAL
TEHNICKI GLASNIK-TECHNICAL JOURNAL ENGINEERING, MULTIDISCIPLINARY-
CiteScore
1.50
自引率
8.30%
发文量
85
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信