基于树莓派计算机的人脸检测与识别

IF 0.7 Q3 ENGINEERING, MULTIDISCIPLINARY
Mario Dubovečak, Emil Dumić, A. Bernik
{"title":"基于树莓派计算机的人脸检测与识别","authors":"Mario Dubovečak, Emil Dumić, A. Bernik","doi":"10.31803/tg-20220321232047","DOIUrl":null,"url":null,"abstract":"This paper presents a face detection and recognition system utilizing a Raspberry Pi computer that is built on a predefined framework. The theoretical section of this article shows several techniques that can be used for face detection, including Haar cascades, Histograms of Oriented Gradients, Support Vector Machine and Deep Learning Methods. The paper also provides examples of some commonly used face recognition techniques, including Fisherfaces, Eigenfaces, Histogram of Local Binary Patterns, SIFT and SURF descriptor-based methods and Deep Learning Methods. The practical aspect of this paper demonstrates use of a Raspberry Pi computer, along with supplementary tools and software, to detect and recognize faces using a pre-defined dataset.","PeriodicalId":43419,"journal":{"name":"TEHNICKI GLASNIK-TECHNICAL JOURNAL","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Face Detection and Recognition Using Raspberry PI Computer\",\"authors\":\"Mario Dubovečak, Emil Dumić, A. Bernik\",\"doi\":\"10.31803/tg-20220321232047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a face detection and recognition system utilizing a Raspberry Pi computer that is built on a predefined framework. The theoretical section of this article shows several techniques that can be used for face detection, including Haar cascades, Histograms of Oriented Gradients, Support Vector Machine and Deep Learning Methods. The paper also provides examples of some commonly used face recognition techniques, including Fisherfaces, Eigenfaces, Histogram of Local Binary Patterns, SIFT and SURF descriptor-based methods and Deep Learning Methods. The practical aspect of this paper demonstrates use of a Raspberry Pi computer, along with supplementary tools and software, to detect and recognize faces using a pre-defined dataset.\",\"PeriodicalId\":43419,\"journal\":{\"name\":\"TEHNICKI GLASNIK-TECHNICAL JOURNAL\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"TEHNICKI GLASNIK-TECHNICAL JOURNAL\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31803/tg-20220321232047\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"TEHNICKI GLASNIK-TECHNICAL JOURNAL","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31803/tg-20220321232047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种基于预定义框架的树莓派计算机人脸检测与识别系统。本文的理论部分展示了几种可用于人脸检测的技术,包括哈尔级联、定向梯度直方图、支持向量机和深度学习方法。本文还提供了一些常用的人脸识别技术的例子,包括渔民脸、特征脸、局部二值模式直方图、基于SIFT和SURF描述符的方法以及深度学习方法。本文的实践方面演示了使用树莓派计算机以及补充工具和软件,使用预定义的数据集检测和识别人脸。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Face Detection and Recognition Using Raspberry PI Computer
This paper presents a face detection and recognition system utilizing a Raspberry Pi computer that is built on a predefined framework. The theoretical section of this article shows several techniques that can be used for face detection, including Haar cascades, Histograms of Oriented Gradients, Support Vector Machine and Deep Learning Methods. The paper also provides examples of some commonly used face recognition techniques, including Fisherfaces, Eigenfaces, Histogram of Local Binary Patterns, SIFT and SURF descriptor-based methods and Deep Learning Methods. The practical aspect of this paper demonstrates use of a Raspberry Pi computer, along with supplementary tools and software, to detect and recognize faces using a pre-defined dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
TEHNICKI GLASNIK-TECHNICAL JOURNAL
TEHNICKI GLASNIK-TECHNICAL JOURNAL ENGINEERING, MULTIDISCIPLINARY-
CiteScore
1.50
自引率
8.30%
发文量
85
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信