时变非线性对象的速度梯度自适应控制

Q3 Mathematics
O. Tomchina, D. N. Polyakhov, O. I. Tokareva, Alexander L. Fradkov
{"title":"时变非线性对象的速度梯度自适应控制","authors":"O. Tomchina, D. N. Polyakhov, O. I. Tokareva, Alexander L. Fradkov","doi":"10.31799/1684-8853-2019-3-37-44","DOIUrl":null,"url":null,"abstract":"Introduction: The motion of many real world systems is described by essentially non-linear and non-stationary models. A number of approaches to the control of such plants are based on constructing an internal model of non-stationarity. However, the non-stationarity model parameters can vary widely, leading to more errors. It is only assumed in this paper that the change rate of the object parameters is limited, while the initial uncertainty can be quite large.Purpose: Analysis of adaptive control algorithms for non-linear and time-varying systems with an explicit reference model, synthesized by the speed gradient method.Results: An estimate was obtained for the maximum deviation of a closed-loop system solution from the reference model solution. It is shown that with sufficiently slow changes in the parameters and a small initial uncertainty, the limit error in the system can be made arbitrarily small. Systems designed by the direct approach and systems based on the identification approach are both considered. The procedures for the synthesis of an adaptive regulator and analysis of the synthesized system are illustrated by an example.Practical relevance: The obtained results allow us to build and analyze a broad class of adaptive systems with reference models under non-stationary conditions.","PeriodicalId":36977,"journal":{"name":"Informatsionno-Upravliaiushchie Sistemy","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Adaptive control of time-varying non-linear plants by speed-gradient algorithms\",\"authors\":\"O. Tomchina, D. N. Polyakhov, O. I. Tokareva, Alexander L. Fradkov\",\"doi\":\"10.31799/1684-8853-2019-3-37-44\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introduction: The motion of many real world systems is described by essentially non-linear and non-stationary models. A number of approaches to the control of such plants are based on constructing an internal model of non-stationarity. However, the non-stationarity model parameters can vary widely, leading to more errors. It is only assumed in this paper that the change rate of the object parameters is limited, while the initial uncertainty can be quite large.Purpose: Analysis of adaptive control algorithms for non-linear and time-varying systems with an explicit reference model, synthesized by the speed gradient method.Results: An estimate was obtained for the maximum deviation of a closed-loop system solution from the reference model solution. It is shown that with sufficiently slow changes in the parameters and a small initial uncertainty, the limit error in the system can be made arbitrarily small. Systems designed by the direct approach and systems based on the identification approach are both considered. The procedures for the synthesis of an adaptive regulator and analysis of the synthesized system are illustrated by an example.Practical relevance: The obtained results allow us to build and analyze a broad class of adaptive systems with reference models under non-stationary conditions.\",\"PeriodicalId\":36977,\"journal\":{\"name\":\"Informatsionno-Upravliaiushchie Sistemy\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Informatsionno-Upravliaiushchie Sistemy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31799/1684-8853-2019-3-37-44\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informatsionno-Upravliaiushchie Sistemy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31799/1684-8853-2019-3-37-44","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2

摘要

许多现实世界系统的运动本质上是用非线性和非平稳模型来描述的。控制这类植物的许多方法都是基于构造非平稳的内部模型。但非平稳性模型参数变化较大,误差较大。本文仅假设目标参数的变化率是有限的,而初始不确定性可能相当大。目的:用速度梯度法合成具有显式参考模型的非线性时变系统的自适应控制算法。结果:得到了闭环系统解与参考模型解的最大偏差的估计。结果表明,在参数变化足够慢且初始不确定度很小的情况下,系统的极限误差可以任意小。采用直接方法设计的系统和基于识别方法设计的系统都得到了考虑。通过实例说明了自适应调节器的合成过程和合成系统的分析。实际意义:获得的结果使我们能够在非平稳条件下建立和分析具有参考模型的广泛的自适应系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive control of time-varying non-linear plants by speed-gradient algorithms
Introduction: The motion of many real world systems is described by essentially non-linear and non-stationary models. A number of approaches to the control of such plants are based on constructing an internal model of non-stationarity. However, the non-stationarity model parameters can vary widely, leading to more errors. It is only assumed in this paper that the change rate of the object parameters is limited, while the initial uncertainty can be quite large.Purpose: Analysis of adaptive control algorithms for non-linear and time-varying systems with an explicit reference model, synthesized by the speed gradient method.Results: An estimate was obtained for the maximum deviation of a closed-loop system solution from the reference model solution. It is shown that with sufficiently slow changes in the parameters and a small initial uncertainty, the limit error in the system can be made arbitrarily small. Systems designed by the direct approach and systems based on the identification approach are both considered. The procedures for the synthesis of an adaptive regulator and analysis of the synthesized system are illustrated by an example.Practical relevance: The obtained results allow us to build and analyze a broad class of adaptive systems with reference models under non-stationary conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Informatsionno-Upravliaiushchie Sistemy
Informatsionno-Upravliaiushchie Sistemy Mathematics-Control and Optimization
CiteScore
1.40
自引率
0.00%
发文量
35
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信