游泳运动员检测数据库的引擎学习模型

IF 0.3 Q3 SOCIAL SCIENCES, INTERDISCIPLINARY
Ivan Šimac, Miran Pobar, Marina Ivašić-Kos
{"title":"游泳运动员检测数据库的引擎学习模型","authors":"Ivan Šimac, Miran Pobar, Marina Ivašić-Kos","doi":"10.31784/zvr.11.1.15","DOIUrl":null,"url":null,"abstract":"Velika količina podataka koja se svaki dan kreira može se upotrijebiti za razvoj algoritama umjetne inteligencije u domeni računalnog vida koji rješavaju zadatke poput klasifikacije slika, detekcije osoba i raspoznavanja akcija. Ti skupovi podataka su najčešće izrađeni od videozapisa i slika preuzetih s televizijskih kanala ili s društvene mreže YouTube i prikupljeni su i pripremljeni za odgovarajući zadatak. Nas je zanimao zadatak detekcije plivača, kako bi se model mogao koristiti za raspoznavanje i unaprjeđenje plivačkih tehnika. Iako danas postoje ogromne otvorene baze slika poput COCO i ImageNet, pripremljene za nadzirano strojno učenje te baze sportskih scena poput Olympic Sports Dataset, UCF Action Sport dataset ili Sport-1M koje uključuju slike popularnijih (gledanijih) sportova, nijedna od njih ne uključuje slike koje bi se mogle koristiti za izradu našeg modela za detekciju plivača. Stoga je u ovom radu opisan postupak snimanja i prikupljanja video materijala te priprema skupa slika UNIRI-SWM za detekciju plivača. Skup uključuje snimke plivača u realnim, situacijskim uvjetima treninga i natjecanja snimljenih akcijskim kamerama iz različitih kutova snimanja. U radu su dani rezultati detekcije plivača korištenjem dubokih konvolucijskih neuronskih mreža Mask R-CNN i Yolov3, naučenim na skupu općih slika prije i nakon učenja na skupu UNIRI-SWM. Rezultati pokazuju da se nakon prilagodbe modela na odgovarajućem skupu slika iz domene plivanja mogu postići jako dobri rezultati detekcije plivača.","PeriodicalId":40998,"journal":{"name":"Zbornik Veleucilista u Rijeci-Journal of the Polytechnics of Rijeka","volume":"1 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Baza\\nslika za strojno učenje modela za detekciju plivača\",\"authors\":\"Ivan Šimac, Miran Pobar, Marina Ivašić-Kos\",\"doi\":\"10.31784/zvr.11.1.15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Velika količina podataka koja se svaki dan kreira može se upotrijebiti za razvoj algoritama umjetne inteligencije u domeni računalnog vida koji rješavaju zadatke poput klasifikacije slika, detekcije osoba i raspoznavanja akcija. Ti skupovi podataka su najčešće izrađeni od videozapisa i slika preuzetih s televizijskih kanala ili s društvene mreže YouTube i prikupljeni su i pripremljeni za odgovarajući zadatak. Nas je zanimao zadatak detekcije plivača, kako bi se model mogao koristiti za raspoznavanje i unaprjeđenje plivačkih tehnika. Iako danas postoje ogromne otvorene baze slika poput COCO i ImageNet, pripremljene za nadzirano strojno učenje te baze sportskih scena poput Olympic Sports Dataset, UCF Action Sport dataset ili Sport-1M koje uključuju slike popularnijih (gledanijih) sportova, nijedna od njih ne uključuje slike koje bi se mogle koristiti za izradu našeg modela za detekciju plivača. Stoga je u ovom radu opisan postupak snimanja i prikupljanja video materijala te priprema skupa slika UNIRI-SWM za detekciju plivača. Skup uključuje snimke plivača u realnim, situacijskim uvjetima treninga i natjecanja snimljenih akcijskim kamerama iz različitih kutova snimanja. U radu su dani rezultati detekcije plivača korištenjem dubokih konvolucijskih neuronskih mreža Mask R-CNN i Yolov3, naučenim na skupu općih slika prije i nakon učenja na skupu UNIRI-SWM. Rezultati pokazuju da se nakon prilagodbe modela na odgovarajućem skupu slika iz domene plivanja mogu postići jako dobri rezultati detekcije plivača.\",\"PeriodicalId\":40998,\"journal\":{\"name\":\"Zbornik Veleucilista u Rijeci-Journal of the Polytechnics of Rijeka\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zbornik Veleucilista u Rijeci-Journal of the Polytechnics of Rijeka\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31784/zvr.11.1.15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"SOCIAL SCIENCES, INTERDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zbornik Veleucilista u Rijeci-Journal of the Polytechnics of Rijeka","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31784/zvr.11.1.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"SOCIAL SCIENCES, INTERDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

每天创建的大量数据可以用于开发计算机视觉领域的人工智能算法,以解决照片分类、人物检测和动作识别等任务。这些数据集主要由从电视频道或YouTube上的社交网络拍摄的视频记录和图像组成,并为适当的任务收集和准备。我们对游泳运动员检测任务感兴趣,以便该模型可以用于识别和改进游泳技术。尽管如今,有大量的开放式图像,如COCO和ImageNet,用于监督机器学习和体育场景库,如奥林匹克运动数据集、UCF动作运动数据集或Sport-1M,其中包括更受欢迎(观看)的运动图像,但它们都不包括可用于设计我们的游泳运动员检测模型的图像。因此,本文描述了UNIRI-SWM图像的视频采集和采集过程。该小组包括真实的游泳视频、训练和比赛的情况以及视频不同角落的摄像机。游泳运动员检测的结果一直在使用深度革命性的神经元网络Mask R-CNN和Yolov3,这是在学习UNIRI-SWM之前和之后的一组普通图像中学习到的。结果表明,将模型调整到合适的游泳图像范围后,可以获得非常好的游泳运动员检测结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Baza slika za strojno učenje modela za detekciju plivača
Velika količina podataka koja se svaki dan kreira može se upotrijebiti za razvoj algoritama umjetne inteligencije u domeni računalnog vida koji rješavaju zadatke poput klasifikacije slika, detekcije osoba i raspoznavanja akcija. Ti skupovi podataka su najčešće izrađeni od videozapisa i slika preuzetih s televizijskih kanala ili s društvene mreže YouTube i prikupljeni su i pripremljeni za odgovarajući zadatak. Nas je zanimao zadatak detekcije plivača, kako bi se model mogao koristiti za raspoznavanje i unaprjeđenje plivačkih tehnika. Iako danas postoje ogromne otvorene baze slika poput COCO i ImageNet, pripremljene za nadzirano strojno učenje te baze sportskih scena poput Olympic Sports Dataset, UCF Action Sport dataset ili Sport-1M koje uključuju slike popularnijih (gledanijih) sportova, nijedna od njih ne uključuje slike koje bi se mogle koristiti za izradu našeg modela za detekciju plivača. Stoga je u ovom radu opisan postupak snimanja i prikupljanja video materijala te priprema skupa slika UNIRI-SWM za detekciju plivača. Skup uključuje snimke plivača u realnim, situacijskim uvjetima treninga i natjecanja snimljenih akcijskim kamerama iz različitih kutova snimanja. U radu su dani rezultati detekcije plivača korištenjem dubokih konvolucijskih neuronskih mreža Mask R-CNN i Yolov3, naučenim na skupu općih slika prije i nakon učenja na skupu UNIRI-SWM. Rezultati pokazuju da se nakon prilagodbe modela na odgovarajućem skupu slika iz domene plivanja mogu postići jako dobri rezultati detekcije plivača.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
25.00%
发文量
2
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信