{"title":"日本河流流域水文模拟的多模型集合基准数据","authors":"Y. Sawada, S. Okugawa, Takayuki Kimizuka","doi":"10.3178/hrl.16.73","DOIUrl":null,"url":null,"abstract":": Verification processes of rainfall-runoff modeling are important to improve the skill of hydrological models to reproduce water cycles in river basins. It is ideal that newly developed models are compared with many benchmarking conventional models in many river basins as part of the ver‐ ification process. However, this robust verification is time-consuming if model developers prepare data and models from scratch. Here we present a useful dataset which can accelerate the robust verification of hydrological models. Our newly developed dataset, Multi-model Ensemble for Robust Verification of hydrological modeling in Japan (MERV-Jp), provides runoff simulation by 44 calibrated conceptual hydrological models in 135 Japanese river basins as well as meteorological forcing which is necessary to drive conceptual hydrological models. By comparing simulated runoff with river discharge observations which are not used for the calibration of hydrological models, we find that the best models in the 44 models can reproduce observed river runoff with KGE larger than 0.6 in most of the 135 river basins, so that the runoff simulation of MERV-Jp is reasonably accurate. MERV-Jp is publicly available to support all hydrological model developers to robustly verify their model improvement.","PeriodicalId":13111,"journal":{"name":"Hydrological Research Letters","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-model ensemble benchmark data for hydrological modeling in Japanese river basins\",\"authors\":\"Y. Sawada, S. Okugawa, Takayuki Kimizuka\",\"doi\":\"10.3178/hrl.16.73\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": Verification processes of rainfall-runoff modeling are important to improve the skill of hydrological models to reproduce water cycles in river basins. It is ideal that newly developed models are compared with many benchmarking conventional models in many river basins as part of the ver‐ ification process. However, this robust verification is time-consuming if model developers prepare data and models from scratch. Here we present a useful dataset which can accelerate the robust verification of hydrological models. Our newly developed dataset, Multi-model Ensemble for Robust Verification of hydrological modeling in Japan (MERV-Jp), provides runoff simulation by 44 calibrated conceptual hydrological models in 135 Japanese river basins as well as meteorological forcing which is necessary to drive conceptual hydrological models. By comparing simulated runoff with river discharge observations which are not used for the calibration of hydrological models, we find that the best models in the 44 models can reproduce observed river runoff with KGE larger than 0.6 in most of the 135 river basins, so that the runoff simulation of MERV-Jp is reasonably accurate. MERV-Jp is publicly available to support all hydrological model developers to robustly verify their model improvement.\",\"PeriodicalId\":13111,\"journal\":{\"name\":\"Hydrological Research Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hydrological Research Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3178/hrl.16.73\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrological Research Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3178/hrl.16.73","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"WATER RESOURCES","Score":null,"Total":0}
Multi-model ensemble benchmark data for hydrological modeling in Japanese river basins
: Verification processes of rainfall-runoff modeling are important to improve the skill of hydrological models to reproduce water cycles in river basins. It is ideal that newly developed models are compared with many benchmarking conventional models in many river basins as part of the ver‐ ification process. However, this robust verification is time-consuming if model developers prepare data and models from scratch. Here we present a useful dataset which can accelerate the robust verification of hydrological models. Our newly developed dataset, Multi-model Ensemble for Robust Verification of hydrological modeling in Japan (MERV-Jp), provides runoff simulation by 44 calibrated conceptual hydrological models in 135 Japanese river basins as well as meteorological forcing which is necessary to drive conceptual hydrological models. By comparing simulated runoff with river discharge observations which are not used for the calibration of hydrological models, we find that the best models in the 44 models can reproduce observed river runoff with KGE larger than 0.6 in most of the 135 river basins, so that the runoff simulation of MERV-Jp is reasonably accurate. MERV-Jp is publicly available to support all hydrological model developers to robustly verify their model improvement.
期刊介绍:
Hydrological Research Letters (HRL) is an international and trans-disciplinary electronic online journal published jointly by Japan Society of Hydrology and Water Resources (JSHWR), Japanese Association of Groundwater Hydrology (JAGH), Japanese Association of Hydrological Sciences (JAHS), and Japanese Society of Physical Hydrology (JSPH), aiming at rapid exchange and outgoing of information in these fields. The purpose is to disseminate original research findings and develop debates on a wide range of investigations on hydrology and water resources to researchers, students and the public. It also publishes reviews of various fields on hydrology and water resources and other information of interest to scientists to encourage communication and utilization of the published results. The editors welcome contributions from authors throughout the world. The decision on acceptance of a submitted manuscript is made by the journal editors on the basis of suitability of subject matter to the scope of the journal, originality of the contribution, potential impacts on societies and scientific merit. Manuscripts submitted to HRL may cover all aspects of hydrology and water resources, including research on physical and biological sciences, engineering, and social and political sciences from the aspects of hydrology and water resources.