亚洲特大城市未来洪水风险评估:以雅加达为例

IF 0.6 Q4 WATER RESOURCES
N. F. Januriyadi, S. Kazama, I. R. Moe, S. Kure
{"title":"亚洲特大城市未来洪水风险评估:以雅加达为例","authors":"N. F. Januriyadi, S. Kazama, I. R. Moe, S. Kure","doi":"10.3178/HRL.12.14","DOIUrl":null,"url":null,"abstract":": The purpose of this research is to assess the future flood risk in rapidly urbanizing cities under climate change. A flood inundation model and a flood damage costs model were employed to project the future flood risk. We employed the combinations of eight global climate models (GCMs) and three representative concentration pathways (RCPs) for precipitation to represent the climate change. Land-use change and land subsidence information were employed to represent the urban development effects. The expected annual damage costs (EADC) were also calculated to explain the severity of the flood risk. In addition, a global approach was used to estimate the asset values by comparing the common parameters (e.g. gross domestic production (GDP) or population). As a result, the combination of climate change and urban development amplified the mean future flood risk by 322% to 402% in 2050, with a 95% confidence interval. The results also show a large uncertainty of the future flood risk due to the future scenarios. These findings will assist policymakers in determining the investment for future flood prevention and mitigation.","PeriodicalId":13111,"journal":{"name":"Hydrological Research Letters","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3178/HRL.12.14","citationCount":"19","resultStr":"{\"title\":\"Evaluation of future flood risk in Asian megacities: a case study of Jakarta\",\"authors\":\"N. F. Januriyadi, S. Kazama, I. R. Moe, S. Kure\",\"doi\":\"10.3178/HRL.12.14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": The purpose of this research is to assess the future flood risk in rapidly urbanizing cities under climate change. A flood inundation model and a flood damage costs model were employed to project the future flood risk. We employed the combinations of eight global climate models (GCMs) and three representative concentration pathways (RCPs) for precipitation to represent the climate change. Land-use change and land subsidence information were employed to represent the urban development effects. The expected annual damage costs (EADC) were also calculated to explain the severity of the flood risk. In addition, a global approach was used to estimate the asset values by comparing the common parameters (e.g. gross domestic production (GDP) or population). As a result, the combination of climate change and urban development amplified the mean future flood risk by 322% to 402% in 2050, with a 95% confidence interval. The results also show a large uncertainty of the future flood risk due to the future scenarios. These findings will assist policymakers in determining the investment for future flood prevention and mitigation.\",\"PeriodicalId\":13111,\"journal\":{\"name\":\"Hydrological Research Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.3178/HRL.12.14\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hydrological Research Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3178/HRL.12.14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrological Research Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3178/HRL.12.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 19

摘要

本研究的目的是评估气候变化下快速城市化城市的未来洪水风险。采用洪水淹没模型和洪水损失成本模型对未来洪水风险进行了预测。我们采用8种全球气候模式(GCMs)和3种代表性降水浓度路径(rcp)的组合来代表气候变化。利用土地利用变化和地面沉降信息表征城市发展效应。预计年损失成本(EADC)也被计算出来,以解释洪水风险的严重性。此外,通过比较常见参数(例如国内生产总值(GDP)或人口),采用全球方法来估计资产价值。因此,气候变化和城市发展的结合将2050年的平均未来洪水风险放大了322%至402%,置信区间为95%。结果还表明,由于未来情景的影响,未来洪水风险存在很大的不确定性。这些研究结果将有助于决策者确定未来防洪和减灾的投资。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluation of future flood risk in Asian megacities: a case study of Jakarta
: The purpose of this research is to assess the future flood risk in rapidly urbanizing cities under climate change. A flood inundation model and a flood damage costs model were employed to project the future flood risk. We employed the combinations of eight global climate models (GCMs) and three representative concentration pathways (RCPs) for precipitation to represent the climate change. Land-use change and land subsidence information were employed to represent the urban development effects. The expected annual damage costs (EADC) were also calculated to explain the severity of the flood risk. In addition, a global approach was used to estimate the asset values by comparing the common parameters (e.g. gross domestic production (GDP) or population). As a result, the combination of climate change and urban development amplified the mean future flood risk by 322% to 402% in 2050, with a 95% confidence interval. The results also show a large uncertainty of the future flood risk due to the future scenarios. These findings will assist policymakers in determining the investment for future flood prevention and mitigation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
18.20%
发文量
9
审稿时长
10 weeks
期刊介绍: Hydrological Research Letters (HRL) is an international and trans-disciplinary electronic online journal published jointly by Japan Society of Hydrology and Water Resources (JSHWR), Japanese Association of Groundwater Hydrology (JAGH), Japanese Association of Hydrological Sciences (JAHS), and Japanese Society of Physical Hydrology (JSPH), aiming at rapid exchange and outgoing of information in these fields. The purpose is to disseminate original research findings and develop debates on a wide range of investigations on hydrology and water resources to researchers, students and the public. It also publishes reviews of various fields on hydrology and water resources and other information of interest to scientists to encourage communication and utilization of the published results. The editors welcome contributions from authors throughout the world. The decision on acceptance of a submitted manuscript is made by the journal editors on the basis of suitability of subject matter to the scope of the journal, originality of the contribution, potential impacts on societies and scientific merit. Manuscripts submitted to HRL may cover all aspects of hydrology and water resources, including research on physical and biological sciences, engineering, and social and political sciences from the aspects of hydrology and water resources.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信