{"title":"亚洲特大城市未来洪水风险评估:以雅加达为例","authors":"N. F. Januriyadi, S. Kazama, I. R. Moe, S. Kure","doi":"10.3178/HRL.12.14","DOIUrl":null,"url":null,"abstract":": The purpose of this research is to assess the future flood risk in rapidly urbanizing cities under climate change. A flood inundation model and a flood damage costs model were employed to project the future flood risk. We employed the combinations of eight global climate models (GCMs) and three representative concentration pathways (RCPs) for precipitation to represent the climate change. Land-use change and land subsidence information were employed to represent the urban development effects. The expected annual damage costs (EADC) were also calculated to explain the severity of the flood risk. In addition, a global approach was used to estimate the asset values by comparing the common parameters (e.g. gross domestic production (GDP) or population). As a result, the combination of climate change and urban development amplified the mean future flood risk by 322% to 402% in 2050, with a 95% confidence interval. The results also show a large uncertainty of the future flood risk due to the future scenarios. These findings will assist policymakers in determining the investment for future flood prevention and mitigation.","PeriodicalId":13111,"journal":{"name":"Hydrological Research Letters","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3178/HRL.12.14","citationCount":"19","resultStr":"{\"title\":\"Evaluation of future flood risk in Asian megacities: a case study of Jakarta\",\"authors\":\"N. F. Januriyadi, S. Kazama, I. R. Moe, S. Kure\",\"doi\":\"10.3178/HRL.12.14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": The purpose of this research is to assess the future flood risk in rapidly urbanizing cities under climate change. A flood inundation model and a flood damage costs model were employed to project the future flood risk. We employed the combinations of eight global climate models (GCMs) and three representative concentration pathways (RCPs) for precipitation to represent the climate change. Land-use change and land subsidence information were employed to represent the urban development effects. The expected annual damage costs (EADC) were also calculated to explain the severity of the flood risk. In addition, a global approach was used to estimate the asset values by comparing the common parameters (e.g. gross domestic production (GDP) or population). As a result, the combination of climate change and urban development amplified the mean future flood risk by 322% to 402% in 2050, with a 95% confidence interval. The results also show a large uncertainty of the future flood risk due to the future scenarios. These findings will assist policymakers in determining the investment for future flood prevention and mitigation.\",\"PeriodicalId\":13111,\"journal\":{\"name\":\"Hydrological Research Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.3178/HRL.12.14\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hydrological Research Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3178/HRL.12.14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrological Research Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3178/HRL.12.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"WATER RESOURCES","Score":null,"Total":0}
Evaluation of future flood risk in Asian megacities: a case study of Jakarta
: The purpose of this research is to assess the future flood risk in rapidly urbanizing cities under climate change. A flood inundation model and a flood damage costs model were employed to project the future flood risk. We employed the combinations of eight global climate models (GCMs) and three representative concentration pathways (RCPs) for precipitation to represent the climate change. Land-use change and land subsidence information were employed to represent the urban development effects. The expected annual damage costs (EADC) were also calculated to explain the severity of the flood risk. In addition, a global approach was used to estimate the asset values by comparing the common parameters (e.g. gross domestic production (GDP) or population). As a result, the combination of climate change and urban development amplified the mean future flood risk by 322% to 402% in 2050, with a 95% confidence interval. The results also show a large uncertainty of the future flood risk due to the future scenarios. These findings will assist policymakers in determining the investment for future flood prevention and mitigation.
期刊介绍:
Hydrological Research Letters (HRL) is an international and trans-disciplinary electronic online journal published jointly by Japan Society of Hydrology and Water Resources (JSHWR), Japanese Association of Groundwater Hydrology (JAGH), Japanese Association of Hydrological Sciences (JAHS), and Japanese Society of Physical Hydrology (JSPH), aiming at rapid exchange and outgoing of information in these fields. The purpose is to disseminate original research findings and develop debates on a wide range of investigations on hydrology and water resources to researchers, students and the public. It also publishes reviews of various fields on hydrology and water resources and other information of interest to scientists to encourage communication and utilization of the published results. The editors welcome contributions from authors throughout the world. The decision on acceptance of a submitted manuscript is made by the journal editors on the basis of suitability of subject matter to the scope of the journal, originality of the contribution, potential impacts on societies and scientific merit. Manuscripts submitted to HRL may cover all aspects of hydrology and water resources, including research on physical and biological sciences, engineering, and social and political sciences from the aspects of hydrology and water resources.