层状制品用镁砂复合材料

IF 0.8 Q4 METALLURGY & METALLURGICAL ENGINEERING
О. Miryuk
{"title":"层状制品用镁砂复合材料","authors":"О. Miryuk","doi":"10.31643/2024/6445.01","DOIUrl":null,"url":null,"abstract":"The article presents the results of experimental studies of magnesia composite materials of layered structure obtained from molding mixtures of various densities. The aim of the work is to synthesize and study the characteristics of three–layer magnesia materials. Molding mixtures were obtained from combined binders based on caustic magnesite and technogenic silica-containing materials. Specially synthesized porous aggregates from liquid-glass raw mixtures were used as fillers. Technological techniques of horizontal and vertical molding of three-layer products have been worked out. Composite magnesia material of three-layer variatropic structure is characterized by a density of 560 kg/m3, compressive strength of 6.1 MPa. Durability tests of layered composite materials have been carried out. Three-layer magnesia composite materials have shown satisfactory resistance in the conditions of an aqueous and aggressive salt environment. The developed magnesia material is comparable in physic-mechanical and cost parameters with an innovative block of encapsulated expanded clay. The low thermal conductivity of the developed magnesia material, equal to 0.115 W/(m·⁰c), will ensure a reduction in material and energy costs by 36.1% compared to the cement analogue.","PeriodicalId":29905,"journal":{"name":"Kompleksnoe Ispolzovanie Mineralnogo Syra","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Magnesia composite materials for layered products\",\"authors\":\"О. Miryuk\",\"doi\":\"10.31643/2024/6445.01\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The article presents the results of experimental studies of magnesia composite materials of layered structure obtained from molding mixtures of various densities. The aim of the work is to synthesize and study the characteristics of three–layer magnesia materials. Molding mixtures were obtained from combined binders based on caustic magnesite and technogenic silica-containing materials. Specially synthesized porous aggregates from liquid-glass raw mixtures were used as fillers. Technological techniques of horizontal and vertical molding of three-layer products have been worked out. Composite magnesia material of three-layer variatropic structure is characterized by a density of 560 kg/m3, compressive strength of 6.1 MPa. Durability tests of layered composite materials have been carried out. Three-layer magnesia composite materials have shown satisfactory resistance in the conditions of an aqueous and aggressive salt environment. The developed magnesia material is comparable in physic-mechanical and cost parameters with an innovative block of encapsulated expanded clay. The low thermal conductivity of the developed magnesia material, equal to 0.115 W/(m·⁰c), will ensure a reduction in material and energy costs by 36.1% compared to the cement analogue.\",\"PeriodicalId\":29905,\"journal\":{\"name\":\"Kompleksnoe Ispolzovanie Mineralnogo Syra\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kompleksnoe Ispolzovanie Mineralnogo Syra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31643/2024/6445.01\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kompleksnoe Ispolzovanie Mineralnogo Syra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31643/2024/6445.01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了用不同密度的模压混合物制备层状结构镁基复合材料的实验研究结果。本工作的目的是合成并研究三层氧化镁材料的特性。以碱性菱镁矿和含硅工艺材料为基础,制备了复合粘结剂。用液体-玻璃原料混合物特别合成的多孔骨料作为填料。研究了三层产品的水平和垂直成型工艺。三层变变结构复合镁砂材料的密度为560 kg/m3,抗压强度为6.1 MPa。对层状复合材料进行了耐久性试验。三层氧化镁复合材料在水环境和侵蚀性盐环境中表现出令人满意的耐蚀性。研制的氧化镁材料在物理力学参数和成本参数上与一种新型包封膨胀粘土块体相当。开发的氧化镁材料导热系数低,相当于0.115 W/(m·c),与水泥类似物相比,将确保材料和能源成本降低36.1%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Magnesia composite materials for layered products
The article presents the results of experimental studies of magnesia composite materials of layered structure obtained from molding mixtures of various densities. The aim of the work is to synthesize and study the characteristics of three–layer magnesia materials. Molding mixtures were obtained from combined binders based on caustic magnesite and technogenic silica-containing materials. Specially synthesized porous aggregates from liquid-glass raw mixtures were used as fillers. Technological techniques of horizontal and vertical molding of three-layer products have been worked out. Composite magnesia material of three-layer variatropic structure is characterized by a density of 560 kg/m3, compressive strength of 6.1 MPa. Durability tests of layered composite materials have been carried out. Three-layer magnesia composite materials have shown satisfactory resistance in the conditions of an aqueous and aggressive salt environment. The developed magnesia material is comparable in physic-mechanical and cost parameters with an innovative block of encapsulated expanded clay. The low thermal conductivity of the developed magnesia material, equal to 0.115 W/(m·⁰c), will ensure a reduction in material and energy costs by 36.1% compared to the cement analogue.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
42.90%
发文量
55
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信