控制单个视网膜神经节细胞质量和减少污染的计算管道

Yeganeh Madadi, Hao Chen, Lu Lu, Monica M Jablonski, Robert W Williams, Siamak Yousefi
{"title":"控制单个视网膜神经节细胞质量和减少污染的计算管道","authors":"Yeganeh Madadi, Hao Chen, Lu Lu, Monica M Jablonski, Robert W Williams, Siamak Yousefi","doi":"10.26502/jbsb.5107061","DOIUrl":null,"url":null,"abstract":"Single-cell transcriptome profiling has transformed our understanding of cellular heterogeneity. However, single-cell data with poor quality can impede proper identification of distinct cell populations and subsequent biological interpretations. In this study, we present a customized computational approach to control the quality and reduce contaminations in single-cell transcriptome profiling of retinal ganglion cells (RGCs). We leverage domain knowledge and statistical methods to effectively eliminate various sources of contaminants for identification of RGC types and subtypes. We show that our end-to-end computational pipeline improves the accuracy and reliability of single-cell transcriptome profiling of RGCs and enhances the biological interpretations. To show the effectiveness of our pipeline, we use 5,994 RGCs captured from retinas of mouse using Fluidigm technology as a benchmark dataset and compare with widely used quality control tools. Further, we introduce seven candidate F-RGC subtype markers that we identified after applying our introduced pipeline on the benchmark dataset. Our customized quality control pipeline could enable retinal single RGC probing with more granularity, leading to new insights into RGC-related visual diseases and development of therapeutic approaches.","PeriodicalId":73617,"journal":{"name":"Journal of bioinformatics and systems biology : Open access","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Computational Pipeline to Control the Quality and Reduce Contamination in Single Retinal Ganglion Cells\",\"authors\":\"Yeganeh Madadi, Hao Chen, Lu Lu, Monica M Jablonski, Robert W Williams, Siamak Yousefi\",\"doi\":\"10.26502/jbsb.5107061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Single-cell transcriptome profiling has transformed our understanding of cellular heterogeneity. However, single-cell data with poor quality can impede proper identification of distinct cell populations and subsequent biological interpretations. In this study, we present a customized computational approach to control the quality and reduce contaminations in single-cell transcriptome profiling of retinal ganglion cells (RGCs). We leverage domain knowledge and statistical methods to effectively eliminate various sources of contaminants for identification of RGC types and subtypes. We show that our end-to-end computational pipeline improves the accuracy and reliability of single-cell transcriptome profiling of RGCs and enhances the biological interpretations. To show the effectiveness of our pipeline, we use 5,994 RGCs captured from retinas of mouse using Fluidigm technology as a benchmark dataset and compare with widely used quality control tools. Further, we introduce seven candidate F-RGC subtype markers that we identified after applying our introduced pipeline on the benchmark dataset. Our customized quality control pipeline could enable retinal single RGC probing with more granularity, leading to new insights into RGC-related visual diseases and development of therapeutic approaches.\",\"PeriodicalId\":73617,\"journal\":{\"name\":\"Journal of bioinformatics and systems biology : Open access\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of bioinformatics and systems biology : Open access\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26502/jbsb.5107061\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of bioinformatics and systems biology : Open access","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26502/jbsb.5107061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

单细胞转录组分析改变了我们对细胞异质性的理解。然而,单细胞数据质量差可能会阻碍不同细胞群的正确识别和随后的生物学解释。在这项研究中,我们提出了一种定制的计算方法来控制视网膜神经节细胞(RGCs)单细胞转录组分析的质量并减少污染。我们利用领域知识和统计方法有效地消除各种污染物来源,以确定研资局的类型和亚型。我们表明,我们的端到端计算管道提高了RGCs单细胞转录组分析的准确性和可靠性,并增强了生物学解释。为了证明我们的流水线的有效性,我们使用Fluidigm技术从小鼠视网膜捕获5994个rgc作为基准数据集,并与广泛使用的质量控制工具进行比较。此外,我们引入了七个候选的F-RGC亚型标记,这些标记是我们在基准数据集上应用我们引入的管道后确定的。我们定制的质量控制管道可以使视网膜单个RGC探测更细粒度,从而为RGC相关的视觉疾病和治疗方法的发展提供新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Computational Pipeline to Control the Quality and Reduce Contamination in Single Retinal Ganglion Cells
Single-cell transcriptome profiling has transformed our understanding of cellular heterogeneity. However, single-cell data with poor quality can impede proper identification of distinct cell populations and subsequent biological interpretations. In this study, we present a customized computational approach to control the quality and reduce contaminations in single-cell transcriptome profiling of retinal ganglion cells (RGCs). We leverage domain knowledge and statistical methods to effectively eliminate various sources of contaminants for identification of RGC types and subtypes. We show that our end-to-end computational pipeline improves the accuracy and reliability of single-cell transcriptome profiling of RGCs and enhances the biological interpretations. To show the effectiveness of our pipeline, we use 5,994 RGCs captured from retinas of mouse using Fluidigm technology as a benchmark dataset and compare with widely used quality control tools. Further, we introduce seven candidate F-RGC subtype markers that we identified after applying our introduced pipeline on the benchmark dataset. Our customized quality control pipeline could enable retinal single RGC probing with more granularity, leading to new insights into RGC-related visual diseases and development of therapeutic approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信