{"title":"氯霉素衍生物及其铁配合物生物制药性能的硅片评价","authors":"Kananda Masonga Michel, Lumbwe Kitenge Edouard, Kayembe Kazadi Oscar, Mbayo Kitambala Marsi, Kalonda Mutombo Emery","doi":"10.26502/jbsb.5107033","DOIUrl":null,"url":null,"abstract":"Evaluation of Biopharmaceutical Properties of Chloramphenicol Derivatives and their Complexes. Abstract Context and The use of chloramphenicol (CAM) has been reduced due to the side effects associated with its use (Bone marrow depression, neurotoxicity) and the increase in resistance to CAM that some microbes develop. To overcome these difficulties, two CAM derivatives, L1 and L2, and their respective iron complexes were synthesized to evaluate in silico their biopharmaceutical properties. The substrate (CAM), as well as the basic reagents (AAP and AASC) were purified from commercial pharmaceuticals. The CAM derivatives (L1 and L2) and also their iron complexes (C1, C2, and C3) were synthesized and showed maximum absorbance at 335 nm for CAM, 325 nm for L1, 395 nm for L2, at 330 nm for C1, at 325 nm for C2, and at 335 nm for C3. The in silico simulations performed with the above-mentioned tools showed that all the ligands (CAM, L1, and L2) present good similarities with the drugs, a good bioavailability because they were compliant with the Lipinski rule. The complexes, although bioavailable, did not conform to Lipinski's rule. CAM showed efficacy in enzymatic inhibition. However, L1 and L2 ligands perform better in ion channel modulation, kinase, and protease inhibition. This suggests that the ligands have better therapeutic performance and may well address several clinical needs. The C3 complex was the compound that showed better bioavailability and high bioactivity thus it was the most bioactive. L1, L2, and C3 could therefore be potential and promising candidates for CAM substitution. Permeability ; hERG : human Ether-a-go-go-Related Gene); GPCR : G protein-coupled receptor; NRL : Nuclear receptor ligand ; ICM : Ion channel modulation; KI : Kinase inhibition ; PI : Protease inhibition ; EI : Enzyme activity inhibition ; MLCT : Metal to Ligand Charge Transfer ; AAP : Acetaminophen ; AASC : Acetylsalicylic acid ; CAM : Chloramphenicol ; C1 : Ferric complex of CAM-O-AAP (L1) ; C2 : CAM-O-AASC iron complex (L2) ; C3 : CAM iron complex ; FeCAM : CAM iron complex; FeCAM-O-AAP : CAM-O-AAP iron complex (L1) ; FeCAM-O-AASC : CAM-O-AASC iron complex (L2) ; L1 : 2-(4-Acetylaminophenoxy)-2-chloro-N-[1,3-dihydroxy-1-(4-nitrophenyl) propan-2-yl] \"CAM-O-AAP; : 2-(2-Acetoxybenzoyloxy)-2-chloro-N-[1,3-dihydroxy-1-(4-nitrophenyl) propan-2-yl] the L2 ligand (from 335 nm for CAM to 395 nm for L2). These observations would thus be evidence for the formation of L1 and L2 compounds. In addition, the UV-Vis spectra of the C1, C2, and C3 complexes compared to the spectra of their respective ligands (L1, L2, and CAM) showed different types of effects, in particular the hyperchromatic effect in the case of the C1 and C3 complexes justified by the increase of the absorption maximum and the hypsochromatic effect in the case of C2 (from 395 nm for L2 to 315 nm for C2). These observations could well indicate the formation of C1, C2, and C3 complexes.","PeriodicalId":73617,"journal":{"name":"Journal of bioinformatics and systems biology : Open access","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In Silico Evaluation of Biopharmaceutical Properties of Chloramphenicol Derivatives and their Iron Complexes\",\"authors\":\"Kananda Masonga Michel, Lumbwe Kitenge Edouard, Kayembe Kazadi Oscar, Mbayo Kitambala Marsi, Kalonda Mutombo Emery\",\"doi\":\"10.26502/jbsb.5107033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Evaluation of Biopharmaceutical Properties of Chloramphenicol Derivatives and their Complexes. Abstract Context and The use of chloramphenicol (CAM) has been reduced due to the side effects associated with its use (Bone marrow depression, neurotoxicity) and the increase in resistance to CAM that some microbes develop. To overcome these difficulties, two CAM derivatives, L1 and L2, and their respective iron complexes were synthesized to evaluate in silico their biopharmaceutical properties. The substrate (CAM), as well as the basic reagents (AAP and AASC) were purified from commercial pharmaceuticals. The CAM derivatives (L1 and L2) and also their iron complexes (C1, C2, and C3) were synthesized and showed maximum absorbance at 335 nm for CAM, 325 nm for L1, 395 nm for L2, at 330 nm for C1, at 325 nm for C2, and at 335 nm for C3. The in silico simulations performed with the above-mentioned tools showed that all the ligands (CAM, L1, and L2) present good similarities with the drugs, a good bioavailability because they were compliant with the Lipinski rule. The complexes, although bioavailable, did not conform to Lipinski's rule. CAM showed efficacy in enzymatic inhibition. However, L1 and L2 ligands perform better in ion channel modulation, kinase, and protease inhibition. This suggests that the ligands have better therapeutic performance and may well address several clinical needs. The C3 complex was the compound that showed better bioavailability and high bioactivity thus it was the most bioactive. L1, L2, and C3 could therefore be potential and promising candidates for CAM substitution. Permeability ; hERG : human Ether-a-go-go-Related Gene); GPCR : G protein-coupled receptor; NRL : Nuclear receptor ligand ; ICM : Ion channel modulation; KI : Kinase inhibition ; PI : Protease inhibition ; EI : Enzyme activity inhibition ; MLCT : Metal to Ligand Charge Transfer ; AAP : Acetaminophen ; AASC : Acetylsalicylic acid ; CAM : Chloramphenicol ; C1 : Ferric complex of CAM-O-AAP (L1) ; C2 : CAM-O-AASC iron complex (L2) ; C3 : CAM iron complex ; FeCAM : CAM iron complex; FeCAM-O-AAP : CAM-O-AAP iron complex (L1) ; FeCAM-O-AASC : CAM-O-AASC iron complex (L2) ; L1 : 2-(4-Acetylaminophenoxy)-2-chloro-N-[1,3-dihydroxy-1-(4-nitrophenyl) propan-2-yl] \\\"CAM-O-AAP; : 2-(2-Acetoxybenzoyloxy)-2-chloro-N-[1,3-dihydroxy-1-(4-nitrophenyl) propan-2-yl] the L2 ligand (from 335 nm for CAM to 395 nm for L2). These observations would thus be evidence for the formation of L1 and L2 compounds. In addition, the UV-Vis spectra of the C1, C2, and C3 complexes compared to the spectra of their respective ligands (L1, L2, and CAM) showed different types of effects, in particular the hyperchromatic effect in the case of the C1 and C3 complexes justified by the increase of the absorption maximum and the hypsochromatic effect in the case of C2 (from 395 nm for L2 to 315 nm for C2). These observations could well indicate the formation of C1, C2, and C3 complexes.\",\"PeriodicalId\":73617,\"journal\":{\"name\":\"Journal of bioinformatics and systems biology : Open access\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of bioinformatics and systems biology : Open access\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26502/jbsb.5107033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of bioinformatics and systems biology : Open access","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26502/jbsb.5107033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In Silico Evaluation of Biopharmaceutical Properties of Chloramphenicol Derivatives and their Iron Complexes
Evaluation of Biopharmaceutical Properties of Chloramphenicol Derivatives and their Complexes. Abstract Context and The use of chloramphenicol (CAM) has been reduced due to the side effects associated with its use (Bone marrow depression, neurotoxicity) and the increase in resistance to CAM that some microbes develop. To overcome these difficulties, two CAM derivatives, L1 and L2, and their respective iron complexes were synthesized to evaluate in silico their biopharmaceutical properties. The substrate (CAM), as well as the basic reagents (AAP and AASC) were purified from commercial pharmaceuticals. The CAM derivatives (L1 and L2) and also their iron complexes (C1, C2, and C3) were synthesized and showed maximum absorbance at 335 nm for CAM, 325 nm for L1, 395 nm for L2, at 330 nm for C1, at 325 nm for C2, and at 335 nm for C3. The in silico simulations performed with the above-mentioned tools showed that all the ligands (CAM, L1, and L2) present good similarities with the drugs, a good bioavailability because they were compliant with the Lipinski rule. The complexes, although bioavailable, did not conform to Lipinski's rule. CAM showed efficacy in enzymatic inhibition. However, L1 and L2 ligands perform better in ion channel modulation, kinase, and protease inhibition. This suggests that the ligands have better therapeutic performance and may well address several clinical needs. The C3 complex was the compound that showed better bioavailability and high bioactivity thus it was the most bioactive. L1, L2, and C3 could therefore be potential and promising candidates for CAM substitution. Permeability ; hERG : human Ether-a-go-go-Related Gene); GPCR : G protein-coupled receptor; NRL : Nuclear receptor ligand ; ICM : Ion channel modulation; KI : Kinase inhibition ; PI : Protease inhibition ; EI : Enzyme activity inhibition ; MLCT : Metal to Ligand Charge Transfer ; AAP : Acetaminophen ; AASC : Acetylsalicylic acid ; CAM : Chloramphenicol ; C1 : Ferric complex of CAM-O-AAP (L1) ; C2 : CAM-O-AASC iron complex (L2) ; C3 : CAM iron complex ; FeCAM : CAM iron complex; FeCAM-O-AAP : CAM-O-AAP iron complex (L1) ; FeCAM-O-AASC : CAM-O-AASC iron complex (L2) ; L1 : 2-(4-Acetylaminophenoxy)-2-chloro-N-[1,3-dihydroxy-1-(4-nitrophenyl) propan-2-yl] "CAM-O-AAP; : 2-(2-Acetoxybenzoyloxy)-2-chloro-N-[1,3-dihydroxy-1-(4-nitrophenyl) propan-2-yl] the L2 ligand (from 335 nm for CAM to 395 nm for L2). These observations would thus be evidence for the formation of L1 and L2 compounds. In addition, the UV-Vis spectra of the C1, C2, and C3 complexes compared to the spectra of their respective ligands (L1, L2, and CAM) showed different types of effects, in particular the hyperchromatic effect in the case of the C1 and C3 complexes justified by the increase of the absorption maximum and the hypsochromatic effect in the case of C2 (from 395 nm for L2 to 315 nm for C2). These observations could well indicate the formation of C1, C2, and C3 complexes.