{"title":"部分动力系统与AF C*-代数","authors":"J. Peters, R. Zerr","doi":"10.31274/RTD-180813-13219","DOIUrl":null,"url":null,"abstract":"We obtain a characterization in terms of dynamical systems of those r-discrete groupoids for which the groupoid C*-algebra is approximately finite-dimensional (AF). These ideas are then used to compute the K-theory for AF algebras by utilizing the actions of these partial homeomorphisms, and these K-theoretic calculations are applied to some specific examples of AF algebras. Finally, we show that, for a certain class of dimension groups, a groupoid can be obtained directly from the dimension group's structure whose associated C*-algebra has its dimension group isomorphic to the original dimension group.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2003-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Partial Dynamical Systems and AF C*-algebras\",\"authors\":\"J. Peters, R. Zerr\",\"doi\":\"10.31274/RTD-180813-13219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We obtain a characterization in terms of dynamical systems of those r-discrete groupoids for which the groupoid C*-algebra is approximately finite-dimensional (AF). These ideas are then used to compute the K-theory for AF algebras by utilizing the actions of these partial homeomorphisms, and these K-theoretic calculations are applied to some specific examples of AF algebras. Finally, we show that, for a certain class of dimension groups, a groupoid can be obtained directly from the dimension group's structure whose associated C*-algebra has its dimension group isomorphic to the original dimension group.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2003-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.31274/RTD-180813-13219\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.31274/RTD-180813-13219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We obtain a characterization in terms of dynamical systems of those r-discrete groupoids for which the groupoid C*-algebra is approximately finite-dimensional (AF). These ideas are then used to compute the K-theory for AF algebras by utilizing the actions of these partial homeomorphisms, and these K-theoretic calculations are applied to some specific examples of AF algebras. Finally, we show that, for a certain class of dimension groups, a groupoid can be obtained directly from the dimension group's structure whose associated C*-algebra has its dimension group isomorphic to the original dimension group.