{"title":"相变材料和散热片对聚光光伏的冷却作用","authors":"Mostafa Kareem Yousif, Muna S. Kasim","doi":"10.31272/jeasd.27.5.5","DOIUrl":null,"url":null,"abstract":"The increase in cell temperature with increased irradiance is probably the most significant disadvantage of using photovoltaic with reflector modules. In this study, a developed Phase Change Material system was integrated into the rear section of a concentrating Photovoltaic system to limit its temperature rise. The heat transmission of the concentrating photovoltaic with a phase change material system was investigated using an experimental method and a numerical method. The temperature distribution was simulated numerically using ANSYS 2021 three-dimensions model. Three cases were studied: one without wax, one with wax, and one with wax and fins. The results displayed convergence between the experimental results and the numerical results. The effect of using phase change materials on performance and efficiency of concentrated photovoltaic cells, the amount of temperature reduction through the wax melting period for concentration with paraffin wax and concentration photovoltaic with fin and paraffin wax by 2.8 °C and 6 °C, respectively, as well as an enhancement in efficiency of photovoltaic at the noon time of cases by 1.807% and 3.182% related to the reference photovoltaic. The outcomes also demonstrated that using fins aids in the distribution of temperatures, resulting in regular melting of wax in comparison to wax without fins.","PeriodicalId":33282,"journal":{"name":"Journal of Engineering and Sustainable Development","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"COOLING OF CONCENTRATED PHOTOVOLTAICS WITH PHASE CHANGE MATERIAL AND FINS\",\"authors\":\"Mostafa Kareem Yousif, Muna S. Kasim\",\"doi\":\"10.31272/jeasd.27.5.5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The increase in cell temperature with increased irradiance is probably the most significant disadvantage of using photovoltaic with reflector modules. In this study, a developed Phase Change Material system was integrated into the rear section of a concentrating Photovoltaic system to limit its temperature rise. The heat transmission of the concentrating photovoltaic with a phase change material system was investigated using an experimental method and a numerical method. The temperature distribution was simulated numerically using ANSYS 2021 three-dimensions model. Three cases were studied: one without wax, one with wax, and one with wax and fins. The results displayed convergence between the experimental results and the numerical results. The effect of using phase change materials on performance and efficiency of concentrated photovoltaic cells, the amount of temperature reduction through the wax melting period for concentration with paraffin wax and concentration photovoltaic with fin and paraffin wax by 2.8 °C and 6 °C, respectively, as well as an enhancement in efficiency of photovoltaic at the noon time of cases by 1.807% and 3.182% related to the reference photovoltaic. The outcomes also demonstrated that using fins aids in the distribution of temperatures, resulting in regular melting of wax in comparison to wax without fins.\",\"PeriodicalId\":33282,\"journal\":{\"name\":\"Journal of Engineering and Sustainable Development\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Engineering and Sustainable Development\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31272/jeasd.27.5.5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering and Sustainable Development","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31272/jeasd.27.5.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
COOLING OF CONCENTRATED PHOTOVOLTAICS WITH PHASE CHANGE MATERIAL AND FINS
The increase in cell temperature with increased irradiance is probably the most significant disadvantage of using photovoltaic with reflector modules. In this study, a developed Phase Change Material system was integrated into the rear section of a concentrating Photovoltaic system to limit its temperature rise. The heat transmission of the concentrating photovoltaic with a phase change material system was investigated using an experimental method and a numerical method. The temperature distribution was simulated numerically using ANSYS 2021 three-dimensions model. Three cases were studied: one without wax, one with wax, and one with wax and fins. The results displayed convergence between the experimental results and the numerical results. The effect of using phase change materials on performance and efficiency of concentrated photovoltaic cells, the amount of temperature reduction through the wax melting period for concentration with paraffin wax and concentration photovoltaic with fin and paraffin wax by 2.8 °C and 6 °C, respectively, as well as an enhancement in efficiency of photovoltaic at the noon time of cases by 1.807% and 3.182% related to the reference photovoltaic. The outcomes also demonstrated that using fins aids in the distribution of temperatures, resulting in regular melting of wax in comparison to wax without fins.