关于us-Cayley图的自同构群

Q3 Mathematics
S. Mirafzal
{"title":"关于us-Cayley图的自同构群","authors":"S. Mirafzal","doi":"10.26493/2590-9770.1624.a3d","DOIUrl":null,"url":null,"abstract":"Let $G$ be a finite abelian group written additively with identity $0$, and $\\Omega$ be an inverse closed generating subset of $G$ such that $0\\notin \\Omega$. We say that $ \\Omega $ has the property \\lq\\lq{}$us$\\rq\\rq{} (unique summation), whenever for every $0 \\neq g\\in G$ if there are $s_1,s_2,s_3, s_4 \\in \\Omega $ such that $s_1+s_2=g=s_3+s_4 $, then we have $\\{s_1,s_2 \\} = \\{s_3,s_4 \\}$. We say that a Cayley graph $\\Gamma=Cay(G;\\Omega)$ is a $us$-$Cayley\\ graph$, whenever $G$ is an abelian group and the generating subset $\\Omega$ has the property \\lq\\lq{}$us$\\rq\\rq{}. In this paper, we show that if $\\Gamma=Cay(G;\\Omega)$ is a $us$-$Cayley\\ graph$, then $Aut(\\Gamma)=L(G)\\rtimes A$, where $L(G)$ is the left regular representation of $G$ and $A$ is the group of all automorphism groups $\\theta$ of the group $G$ such that $\\theta(\\Omega)=\\Omega$. Then, as some applications, we explicitly determine the automorphism groups of some classes of graphs including M\\\"{o}bius ladders and $k$-ary $n$-cubes.","PeriodicalId":36246,"journal":{"name":"Art of Discrete and Applied Mathematics","volume":"7 1","pages":"1"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"On the automorphism groups of us-Cayley graphs\",\"authors\":\"S. Mirafzal\",\"doi\":\"10.26493/2590-9770.1624.a3d\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $G$ be a finite abelian group written additively with identity $0$, and $\\\\Omega$ be an inverse closed generating subset of $G$ such that $0\\\\notin \\\\Omega$. We say that $ \\\\Omega $ has the property \\\\lq\\\\lq{}$us$\\\\rq\\\\rq{} (unique summation), whenever for every $0 \\\\neq g\\\\in G$ if there are $s_1,s_2,s_3, s_4 \\\\in \\\\Omega $ such that $s_1+s_2=g=s_3+s_4 $, then we have $\\\\{s_1,s_2 \\\\} = \\\\{s_3,s_4 \\\\}$. We say that a Cayley graph $\\\\Gamma=Cay(G;\\\\Omega)$ is a $us$-$Cayley\\\\ graph$, whenever $G$ is an abelian group and the generating subset $\\\\Omega$ has the property \\\\lq\\\\lq{}$us$\\\\rq\\\\rq{}. In this paper, we show that if $\\\\Gamma=Cay(G;\\\\Omega)$ is a $us$-$Cayley\\\\ graph$, then $Aut(\\\\Gamma)=L(G)\\\\rtimes A$, where $L(G)$ is the left regular representation of $G$ and $A$ is the group of all automorphism groups $\\\\theta$ of the group $G$ such that $\\\\theta(\\\\Omega)=\\\\Omega$. Then, as some applications, we explicitly determine the automorphism groups of some classes of graphs including M\\\\\\\"{o}bius ladders and $k$-ary $n$-cubes.\",\"PeriodicalId\":36246,\"journal\":{\"name\":\"Art of Discrete and Applied Mathematics\",\"volume\":\"7 1\",\"pages\":\"1\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Art of Discrete and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26493/2590-9770.1624.a3d\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Art of Discrete and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26493/2590-9770.1624.a3d","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 5

摘要

让 $G$ 是一个有限阿贝尔群,加性地写有恒等式 $0$,和 $\Omega$ 是的逆闭生成子集 $G$ 这样 $0\notin \Omega$。我们说 $ \Omega $ 拥有财产 \lq\lq{}$us$\rq\rq{} (唯一的和),每当对于每一个 $0 \neq g\in G$ 如果有的话 $s_1,s_2,s_3, s_4 \in \Omega $ 这样 $s_1+s_2=g=s_3+s_4 $,那么我们有 $\{s_1,s_2 \} = \{s_3,s_4 \}$。我们称之为凯莱图 $\Gamma=Cay(G;\Omega)$ 是? $us$-$Cayley\ graph$,每当 $G$ 是一个阿贝尔群和生成子集吗 $\Omega$ 拥有财产 \lq\lq{}$us$\rq\rq{}。在本文中,我们证明了如果 $\Gamma=Cay(G;\Omega)$ 是? $us$-$Cayley\ graph$那么, $Aut(\Gamma)=L(G)\rtimes A$,其中 $L(G)$ 左边的正则表示是 $G$ 和 $A$ 是所有自同构群的群吗 $\theta$ 小组的成员 $G$ 这样 $\theta(\Omega)=\Omega$。然后,作为一些应用,我们显式地确定了一些图的自同构群,包括Möbius阶梯和 $k$-ary $n$-立方体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the automorphism groups of us-Cayley graphs
Let $G$ be a finite abelian group written additively with identity $0$, and $\Omega$ be an inverse closed generating subset of $G$ such that $0\notin \Omega$. We say that $ \Omega $ has the property \lq\lq{}$us$\rq\rq{} (unique summation), whenever for every $0 \neq g\in G$ if there are $s_1,s_2,s_3, s_4 \in \Omega $ such that $s_1+s_2=g=s_3+s_4 $, then we have $\{s_1,s_2 \} = \{s_3,s_4 \}$. We say that a Cayley graph $\Gamma=Cay(G;\Omega)$ is a $us$-$Cayley\ graph$, whenever $G$ is an abelian group and the generating subset $\Omega$ has the property \lq\lq{}$us$\rq\rq{}. In this paper, we show that if $\Gamma=Cay(G;\Omega)$ is a $us$-$Cayley\ graph$, then $Aut(\Gamma)=L(G)\rtimes A$, where $L(G)$ is the left regular representation of $G$ and $A$ is the group of all automorphism groups $\theta$ of the group $G$ such that $\theta(\Omega)=\Omega$. Then, as some applications, we explicitly determine the automorphism groups of some classes of graphs including M\"{o}bius ladders and $k$-ary $n$-cubes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Art of Discrete and Applied Mathematics
Art of Discrete and Applied Mathematics Mathematics-Discrete Mathematics and Combinatorics
CiteScore
0.90
自引率
0.00%
发文量
43
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信