两个完全图的笛卡儿积的消色差数

Q3 Mathematics
M. Horňák
{"title":"两个完全图的笛卡儿积的消色差数","authors":"M. Horňák","doi":"10.26493/2590-9770.1555.9a6","DOIUrl":null,"url":null,"abstract":"A vertex colouring $f:V(G)\\to C$ of a graph $G$ is complete if for any $c_1,c_2\\in C$ with $c_1\\ne c_2$ there are in $G$ adjacent vertices $v_1,v_2$ such that $f(v_1)=c_1$ and $f(v_2)=c_2$. The achromatic number of $G$ is the maximum number $\\mathrm{achr}(G)$ of colours in a proper complete vertex colouring of $G$. Let $G_1\\square G_2$ denote the Cartesian product of graphs $G_1$ and $G_2$. In the paper $\\mathrm{achr}(K_{r^2+r+1}\\square K_q)$ is determined for an infinite number of $q$s provided that $r$ is a finite projective plane order.","PeriodicalId":36246,"journal":{"name":"Art of Discrete and Applied Mathematics","volume":"25 1","pages":"1"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the achromatic number of the Cartesian product of two complete graphs\",\"authors\":\"M. Horňák\",\"doi\":\"10.26493/2590-9770.1555.9a6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A vertex colouring $f:V(G)\\\\to C$ of a graph $G$ is complete if for any $c_1,c_2\\\\in C$ with $c_1\\\\ne c_2$ there are in $G$ adjacent vertices $v_1,v_2$ such that $f(v_1)=c_1$ and $f(v_2)=c_2$. The achromatic number of $G$ is the maximum number $\\\\mathrm{achr}(G)$ of colours in a proper complete vertex colouring of $G$. Let $G_1\\\\square G_2$ denote the Cartesian product of graphs $G_1$ and $G_2$. In the paper $\\\\mathrm{achr}(K_{r^2+r+1}\\\\square K_q)$ is determined for an infinite number of $q$s provided that $r$ is a finite projective plane order.\",\"PeriodicalId\":36246,\"journal\":{\"name\":\"Art of Discrete and Applied Mathematics\",\"volume\":\"25 1\",\"pages\":\"1\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Art of Discrete and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26493/2590-9770.1555.9a6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Art of Discrete and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26493/2590-9770.1555.9a6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

图$G$的顶点f:V(G)\到C$是完备的,如果对C$中的任意$c_1,c_2\与$c_1\ne c_2$相邻的$v_1,v_2$使得$f(v_1)=c_1$和$f(v_2)=c_2$。$G$的消色差数是$G$的适当完全顶点着色的最大颜色数$\mathrm{achr}(G)$。设$G_1\square G_2$表示图$G_1$和$G_2$的笛卡尔积。本文在$r$是有限投影平面阶的条件下,确定了$ $ mathm {achr}(K_{r^2+r+1}\square K_q)$ $对于无限个$q$s。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the achromatic number of the Cartesian product of two complete graphs
A vertex colouring $f:V(G)\to C$ of a graph $G$ is complete if for any $c_1,c_2\in C$ with $c_1\ne c_2$ there are in $G$ adjacent vertices $v_1,v_2$ such that $f(v_1)=c_1$ and $f(v_2)=c_2$. The achromatic number of $G$ is the maximum number $\mathrm{achr}(G)$ of colours in a proper complete vertex colouring of $G$. Let $G_1\square G_2$ denote the Cartesian product of graphs $G_1$ and $G_2$. In the paper $\mathrm{achr}(K_{r^2+r+1}\square K_q)$ is determined for an infinite number of $q$s provided that $r$ is a finite projective plane order.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Art of Discrete and Applied Mathematics
Art of Discrete and Applied Mathematics Mathematics-Discrete Mathematics and Combinatorics
CiteScore
0.90
自引率
0.00%
发文量
43
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信