利用地震属性预测尼日利亚尼日尔三角洲“arike”油田储层砂岩孔隙度

A. Falade, J. Amigun, Florence Oyediran
{"title":"利用地震属性预测尼日利亚尼日尔三角洲“arike”油田储层砂岩孔隙度","authors":"A. Falade, J. Amigun, Florence Oyediran","doi":"10.26480/esmy.02.2022.146.156","DOIUrl":null,"url":null,"abstract":"The study aimed at predicting the porosity of reservoir sands in ‘Arike field’ Niger Delta, Nigeria by converting seismic trace of the interval of interest in the seismic survey into a porosity log to generate a porosity volume. Optimal number of relevant attributes were selected using multi-attribute analysis. The study discovered that three attributes (energy, velocity fan, and Q factor) were efficient. These attributes were then utilized to train a supervised neural network to establish the relationship between seismic response and porosity. The Opendtect software used, extracted all specified input attributes and target values over the specified range along the well tracks and randomly divided the data into a training and test set attribute. The study established the integration and correlation of energy attribute, velocity fan attribute, and Q factor as relevant seismic attributes for porosity estimation when little or no well log is available, hence giving a means of spatially extending well data.","PeriodicalId":53062,"journal":{"name":"Earth Science Malaysia","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PREDICTION OF POROSITY OF RESERVOIR SANDS USING SEISMIC ATTRIBUTES IN “ARIKE” FIELD NIGER DELTA, NIGERIA\",\"authors\":\"A. Falade, J. Amigun, Florence Oyediran\",\"doi\":\"10.26480/esmy.02.2022.146.156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The study aimed at predicting the porosity of reservoir sands in ‘Arike field’ Niger Delta, Nigeria by converting seismic trace of the interval of interest in the seismic survey into a porosity log to generate a porosity volume. Optimal number of relevant attributes were selected using multi-attribute analysis. The study discovered that three attributes (energy, velocity fan, and Q factor) were efficient. These attributes were then utilized to train a supervised neural network to establish the relationship between seismic response and porosity. The Opendtect software used, extracted all specified input attributes and target values over the specified range along the well tracks and randomly divided the data into a training and test set attribute. The study established the integration and correlation of energy attribute, velocity fan attribute, and Q factor as relevant seismic attributes for porosity estimation when little or no well log is available, hence giving a means of spatially extending well data.\",\"PeriodicalId\":53062,\"journal\":{\"name\":\"Earth Science Malaysia\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth Science Malaysia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26480/esmy.02.2022.146.156\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth Science Malaysia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26480/esmy.02.2022.146.156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

该研究旨在预测尼日利亚尼日尔三角洲“Arike油田”储层砂岩的孔隙度,方法是将地震勘探中感兴趣的层段的地震迹线转换为孔隙度测井曲线,从而生成孔隙度体积。通过多属性分析,选择出最优的相关属性数。研究发现三个属性(能量、速度扇和Q因子)是有效的。然后利用这些属性来训练一个有监督的神经网络,以建立地震反应与孔隙度之间的关系。Opendtect软件在井眼轨迹的指定范围内提取所有指定的输入属性和目标值,并将数据随机划分为训练集和测试集属性。研究建立了能量属性、速度扇属性和Q因子的整合与关联,在测井资料少或无测井资料的情况下,作为孔隙度估算的相关地震属性,为井资料的空间扩展提供了一种手段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PREDICTION OF POROSITY OF RESERVOIR SANDS USING SEISMIC ATTRIBUTES IN “ARIKE” FIELD NIGER DELTA, NIGERIA
The study aimed at predicting the porosity of reservoir sands in ‘Arike field’ Niger Delta, Nigeria by converting seismic trace of the interval of interest in the seismic survey into a porosity log to generate a porosity volume. Optimal number of relevant attributes were selected using multi-attribute analysis. The study discovered that three attributes (energy, velocity fan, and Q factor) were efficient. These attributes were then utilized to train a supervised neural network to establish the relationship between seismic response and porosity. The Opendtect software used, extracted all specified input attributes and target values over the specified range along the well tracks and randomly divided the data into a training and test set attribute. The study established the integration and correlation of energy attribute, velocity fan attribute, and Q factor as relevant seismic attributes for porosity estimation when little or no well log is available, hence giving a means of spatially extending well data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信