基于遗传规划的启发式方法简化崎岖地貌勘探

Q1 Multidisciplinary
Gloria Pietropolli, Giuliamaria Menara, M. Castelli
{"title":"基于遗传规划的启发式方法简化崎岖地貌勘探","authors":"Gloria Pietropolli, Giuliamaria Menara, M. Castelli","doi":"10.28991/esj-2023-07-04-01","DOIUrl":null,"url":null,"abstract":"Some optimization problems are difficult to solve due to a considerable number of local optima, which may result in premature convergence of the optimization process. To address this problem, we propose a novel heuristic method for constructing a smooth surrogate model of the original function. The surrogate function is easier to optimize but maintains a fundamental property of the original rugged fitness landscape: the location of the global optimum. To create such a surrogate model, we consider a linear genetic programming approach coupled with a self-tuning fitness function. More specifically, to evaluate the fitness of the produced surrogate functions, we employ Fuzzy Self-Tuning Particle Swarm Optimization, a setting-free version of particle swarm optimization. To assess the performance of the proposed method, we considered a set of benchmark functions characterized by high noise and ruggedness. Moreover, the method is evaluated over different problems’ dimensionalities. The proposed approach reveals its suitability for performing the proposed task. In particular, experimental results confirm its capability to find the global argminimum for all the considered benchmark problems and all the domain dimensions taken into account, thus providing an innovative and promising strategy for dealing with challenging optimization problems. Doi: 10.28991/ESJ-2023-07-04-01 Full Text: PDF","PeriodicalId":11586,"journal":{"name":"Emerging Science Journal","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Genetic Programming Based Heuristic to Simplify Rugged Landscapes Exploration\",\"authors\":\"Gloria Pietropolli, Giuliamaria Menara, M. Castelli\",\"doi\":\"10.28991/esj-2023-07-04-01\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Some optimization problems are difficult to solve due to a considerable number of local optima, which may result in premature convergence of the optimization process. To address this problem, we propose a novel heuristic method for constructing a smooth surrogate model of the original function. The surrogate function is easier to optimize but maintains a fundamental property of the original rugged fitness landscape: the location of the global optimum. To create such a surrogate model, we consider a linear genetic programming approach coupled with a self-tuning fitness function. More specifically, to evaluate the fitness of the produced surrogate functions, we employ Fuzzy Self-Tuning Particle Swarm Optimization, a setting-free version of particle swarm optimization. To assess the performance of the proposed method, we considered a set of benchmark functions characterized by high noise and ruggedness. Moreover, the method is evaluated over different problems’ dimensionalities. The proposed approach reveals its suitability for performing the proposed task. In particular, experimental results confirm its capability to find the global argminimum for all the considered benchmark problems and all the domain dimensions taken into account, thus providing an innovative and promising strategy for dealing with challenging optimization problems. Doi: 10.28991/ESJ-2023-07-04-01 Full Text: PDF\",\"PeriodicalId\":11586,\"journal\":{\"name\":\"Emerging Science Journal\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Emerging Science Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.28991/esj-2023-07-04-01\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Multidisciplinary\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Emerging Science Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28991/esj-2023-07-04-01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

摘要

一些优化问题由于存在大量的局部最优点而难以求解,这可能导致优化过程过早收敛。为了解决这个问题,我们提出了一种新的启发式方法来构造原始函数的光滑代理模型。替代函数更容易优化,但保持了原始崎岖适应度景观的基本属性:全局最优的位置。为了创建这样的代理模型,我们考虑了线性遗传规划方法与自调整适应度函数相结合。更具体地说,为了评估生成的代理函数的适应度,我们采用模糊自调整粒子群优化,这是粒子群优化的一种无设置版本。为了评估所提出的方法的性能,我们考虑了一组具有高噪声和坚固性的基准函数。并在不同的问题维度上对该方法进行了评价。所建议的方法揭示了其执行所建议的任务的适用性。特别是,实验结果证实了它能够找到所有考虑的基准问题和所有考虑的域维度的全局最小值,从而为处理具有挑战性的优化问题提供了一种创新和有前途的策略。Doi: 10.28991/ESJ-2023-07-04-01全文:PDF
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Genetic Programming Based Heuristic to Simplify Rugged Landscapes Exploration
Some optimization problems are difficult to solve due to a considerable number of local optima, which may result in premature convergence of the optimization process. To address this problem, we propose a novel heuristic method for constructing a smooth surrogate model of the original function. The surrogate function is easier to optimize but maintains a fundamental property of the original rugged fitness landscape: the location of the global optimum. To create such a surrogate model, we consider a linear genetic programming approach coupled with a self-tuning fitness function. More specifically, to evaluate the fitness of the produced surrogate functions, we employ Fuzzy Self-Tuning Particle Swarm Optimization, a setting-free version of particle swarm optimization. To assess the performance of the proposed method, we considered a set of benchmark functions characterized by high noise and ruggedness. Moreover, the method is evaluated over different problems’ dimensionalities. The proposed approach reveals its suitability for performing the proposed task. In particular, experimental results confirm its capability to find the global argminimum for all the considered benchmark problems and all the domain dimensions taken into account, thus providing an innovative and promising strategy for dealing with challenging optimization problems. Doi: 10.28991/ESJ-2023-07-04-01 Full Text: PDF
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Emerging Science Journal
Emerging Science Journal Multidisciplinary-Multidisciplinary
CiteScore
5.40
自引率
0.00%
发文量
155
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信