{"title":"函数系统中的级数空间","authors":"M. Sheremeta","doi":"10.30970/ms.59.1.46-59","DOIUrl":null,"url":null,"abstract":"The Banach and Fr\\'{e}chet spaces of series $A(z)=\\sum_{n=1}^{\\infty}a_nf(\\lambda_nz)$ regularly converging in ${\\mathbb C}$,where $f$ is an entire transcendental function and $(\\lambda_n)$ is a sequence of positive numbers increasing to $+\\infty$, are studied.Let $M_f(r)=\\max\\{|f(z)|:\\,|z|=r\\}$, $\\Gamma_f(r)=\\frac{d\\ln\\,M_f(r)}{d\\ln\\,r}$, $h$ be positive continuous function on $[0,+\\infty)$increasing to $+\\infty$ and ${\\bf S}_h(f,\\Lambda)$ be a class of the function $A$ such that $|a_n|M_f(\\lambda_nh(\\lambda_n))$ $\\to 0$ as$n\\to+\\infty$. Define $\\|A\\|_h=\\max\\{|a_n|M_f(\\lambda_nh(\\lambda_n)):n\\ge 1\\}$. It is proved that if$\\ln\\,n=o(\\Gamma_f(\\lambda_n))$ as $n\\to\\infty$ then $({\\bf S}_h(f,\\Lambda),\\|\\cdot\\|_h)$ is a non-uniformly convexBanach space which is also separable.In terms of generalized orders, the relationship between the growth of $\\mathfrak{M}(r,A)=\\break=\\sum_{n=1}^{\\infty} |a_n|M_f(r\\lambda_n)$,the maximal term $\\mu(r,A)= \\max\\{|a_n|M_f(r\\lambda_n)\\colon n\\ge 1\\}$ and the central index$\\nu(r,A)= \\max\\{n\\ge 1\\colon |a_n|M_f(r\\lambda_n)=\\mu(r,A)\\}$ and the decrease of the coefficients $a_n$.The results obtained are used to construct Fr\\'{e}chet spaces of series in systems of functions.","PeriodicalId":37555,"journal":{"name":"Matematychni Studii","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spaces of series in system of functions\",\"authors\":\"M. Sheremeta\",\"doi\":\"10.30970/ms.59.1.46-59\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Banach and Fr\\\\'{e}chet spaces of series $A(z)=\\\\sum_{n=1}^{\\\\infty}a_nf(\\\\lambda_nz)$ regularly converging in ${\\\\mathbb C}$,where $f$ is an entire transcendental function and $(\\\\lambda_n)$ is a sequence of positive numbers increasing to $+\\\\infty$, are studied.Let $M_f(r)=\\\\max\\\\{|f(z)|:\\\\,|z|=r\\\\}$, $\\\\Gamma_f(r)=\\\\frac{d\\\\ln\\\\,M_f(r)}{d\\\\ln\\\\,r}$, $h$ be positive continuous function on $[0,+\\\\infty)$increasing to $+\\\\infty$ and ${\\\\bf S}_h(f,\\\\Lambda)$ be a class of the function $A$ such that $|a_n|M_f(\\\\lambda_nh(\\\\lambda_n))$ $\\\\to 0$ as$n\\\\to+\\\\infty$. Define $\\\\|A\\\\|_h=\\\\max\\\\{|a_n|M_f(\\\\lambda_nh(\\\\lambda_n)):n\\\\ge 1\\\\}$. It is proved that if$\\\\ln\\\\,n=o(\\\\Gamma_f(\\\\lambda_n))$ as $n\\\\to\\\\infty$ then $({\\\\bf S}_h(f,\\\\Lambda),\\\\|\\\\cdot\\\\|_h)$ is a non-uniformly convexBanach space which is also separable.In terms of generalized orders, the relationship between the growth of $\\\\mathfrak{M}(r,A)=\\\\break=\\\\sum_{n=1}^{\\\\infty} |a_n|M_f(r\\\\lambda_n)$,the maximal term $\\\\mu(r,A)= \\\\max\\\\{|a_n|M_f(r\\\\lambda_n)\\\\colon n\\\\ge 1\\\\}$ and the central index$\\\\nu(r,A)= \\\\max\\\\{n\\\\ge 1\\\\colon |a_n|M_f(r\\\\lambda_n)=\\\\mu(r,A)\\\\}$ and the decrease of the coefficients $a_n$.The results obtained are used to construct Fr\\\\'{e}chet spaces of series in systems of functions.\",\"PeriodicalId\":37555,\"journal\":{\"name\":\"Matematychni Studii\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Matematychni Studii\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30970/ms.59.1.46-59\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matematychni Studii","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30970/ms.59.1.46-59","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
The Banach and Fr\'{e}chet spaces of series $A(z)=\sum_{n=1}^{\infty}a_nf(\lambda_nz)$ regularly converging in ${\mathbb C}$,where $f$ is an entire transcendental function and $(\lambda_n)$ is a sequence of positive numbers increasing to $+\infty$, are studied.Let $M_f(r)=\max\{|f(z)|:\,|z|=r\}$, $\Gamma_f(r)=\frac{d\ln\,M_f(r)}{d\ln\,r}$, $h$ be positive continuous function on $[0,+\infty)$increasing to $+\infty$ and ${\bf S}_h(f,\Lambda)$ be a class of the function $A$ such that $|a_n|M_f(\lambda_nh(\lambda_n))$ $\to 0$ as$n\to+\infty$. Define $\|A\|_h=\max\{|a_n|M_f(\lambda_nh(\lambda_n)):n\ge 1\}$. It is proved that if$\ln\,n=o(\Gamma_f(\lambda_n))$ as $n\to\infty$ then $({\bf S}_h(f,\Lambda),\|\cdot\|_h)$ is a non-uniformly convexBanach space which is also separable.In terms of generalized orders, the relationship between the growth of $\mathfrak{M}(r,A)=\break=\sum_{n=1}^{\infty} |a_n|M_f(r\lambda_n)$,the maximal term $\mu(r,A)= \max\{|a_n|M_f(r\lambda_n)\colon n\ge 1\}$ and the central index$\nu(r,A)= \max\{n\ge 1\colon |a_n|M_f(r\lambda_n)=\mu(r,A)\}$ and the decrease of the coefficients $a_n$.The results obtained are used to construct Fr\'{e}chet spaces of series in systems of functions.