{"title":"洛伦兹群(1/2,0)+(0,1/2)表示下的广义方程及其解","authors":"J. A. Cázares, Valeriy Dvoeglazov","doi":"10.31349/revmexfis.69.050703","DOIUrl":null,"url":null,"abstract":"We present explicit examples of generalizations in relativistic quantum mechanics. First of all, we discuss the generalized spin-1/2 equations for neutrinos. They have been obtained by means of the Gersten-Sakurai method for derivations of arbitrary-spin relativistic equations. Possible physical consequences are discussed. Next, it is easy to check that both Dirac algebraic equations Det(ˆp − m) = 0 and Det(ˆp + m) = 0 for u− and v− 4-spinors have solutions with p0 = ±Ep = ± p p2 + m2. The same is true for higher-spin equations. Meanwhile, every book considers the equality p0 = Ep for both u− and v− spinors of the (1/2, 0) ⊕ (0, 1/2) representation, thus applying the DiracFeynman-Stueckelberg procedure for elimination of the negative-energy solutions. The recent Ziino works (and, independently, the articles of several others) show that the Fock space can be doubled. We re-consider this possibility on the quantum field level for both S = 1/2 and higher spin particles. The third example is: we postulate the non-commutativity of 4-momenta, and we derive the mass splitting in the Dirac equation. The applications are discussed.","PeriodicalId":21538,"journal":{"name":"Revista Mexicana De Fisica","volume":"1 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized equations and their solutions in the (1/2,0)+(0,1/2) representations of the Lorentz group\",\"authors\":\"J. A. Cázares, Valeriy Dvoeglazov\",\"doi\":\"10.31349/revmexfis.69.050703\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present explicit examples of generalizations in relativistic quantum mechanics. First of all, we discuss the generalized spin-1/2 equations for neutrinos. They have been obtained by means of the Gersten-Sakurai method for derivations of arbitrary-spin relativistic equations. Possible physical consequences are discussed. Next, it is easy to check that both Dirac algebraic equations Det(ˆp − m) = 0 and Det(ˆp + m) = 0 for u− and v− 4-spinors have solutions with p0 = ±Ep = ± p p2 + m2. The same is true for higher-spin equations. Meanwhile, every book considers the equality p0 = Ep for both u− and v− spinors of the (1/2, 0) ⊕ (0, 1/2) representation, thus applying the DiracFeynman-Stueckelberg procedure for elimination of the negative-energy solutions. The recent Ziino works (and, independently, the articles of several others) show that the Fock space can be doubled. We re-consider this possibility on the quantum field level for both S = 1/2 and higher spin particles. The third example is: we postulate the non-commutativity of 4-momenta, and we derive the mass splitting in the Dirac equation. The applications are discussed.\",\"PeriodicalId\":21538,\"journal\":{\"name\":\"Revista Mexicana De Fisica\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Mexicana De Fisica\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.31349/revmexfis.69.050703\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Mexicana De Fisica","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.31349/revmexfis.69.050703","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Generalized equations and their solutions in the (1/2,0)+(0,1/2) representations of the Lorentz group
We present explicit examples of generalizations in relativistic quantum mechanics. First of all, we discuss the generalized spin-1/2 equations for neutrinos. They have been obtained by means of the Gersten-Sakurai method for derivations of arbitrary-spin relativistic equations. Possible physical consequences are discussed. Next, it is easy to check that both Dirac algebraic equations Det(ˆp − m) = 0 and Det(ˆp + m) = 0 for u− and v− 4-spinors have solutions with p0 = ±Ep = ± p p2 + m2. The same is true for higher-spin equations. Meanwhile, every book considers the equality p0 = Ep for both u− and v− spinors of the (1/2, 0) ⊕ (0, 1/2) representation, thus applying the DiracFeynman-Stueckelberg procedure for elimination of the negative-energy solutions. The recent Ziino works (and, independently, the articles of several others) show that the Fock space can be doubled. We re-consider this possibility on the quantum field level for both S = 1/2 and higher spin particles. The third example is: we postulate the non-commutativity of 4-momenta, and we derive the mass splitting in the Dirac equation. The applications are discussed.
期刊介绍:
Durante los últimos años, los responsables de la Revista Mexicana de Física, la Revista Mexicana de Física E y la Revista Mexicana de Física S, hemos realizado esfuerzos para fortalecer la presencia de estas publicaciones en nuestra página Web ( http://rmf.smf.mx).