T.A.O.K. Meetiyagoda, K. Fadilah, Masayori Hagimori, M. D. H. J. Senavirathna, T. Fujino
{"title":"利用低分子荧光探针可视化和量化腐植酸对水生植物锌积累的影响","authors":"T.A.O.K. Meetiyagoda, K. Fadilah, Masayori Hagimori, M. D. H. J. Senavirathna, T. Fujino","doi":"10.2965/JWET.20-110","DOIUrl":null,"url":null,"abstract":"The main aims of this study were to investigate the impact of humic acid (HA) on zinc (Zn) accumulation in aquatic plants and to study a low-molecular-weight Zn2+-selective fluorescent probe to visualize and quantify the tissue-level Zn concentrations. Ceratophyllum demersum and Aldrovanda vesiculosa were exposed to solutions containing Zn (1 and 3 mg/L), HA (0.5 mg/L), and Zn with HA for nine days. The Zn accumulation (mg/g) in the plants was measured by ICP-OES and we applied a Zn2+-selective fluorescent probe with a low molecular weight to the analysis of Zn in C. demersum plant cells using fluorescence microscopy and ImageJ software. The application of HA reduced the Zn accumulation significantly (p < 0.05) and increased the chlorophyll concentration slightly less significantly (p > 0.05) in both plants. Results obtained from ImageJ revealed a strong positive correlation between fluorescence intensity and the Zn accumulation in C. demersum (r = 0.988). We showed that the application of HA reduced the Zn accumulation in both plants, and successfully visualized and quantified that a Zn2+-selective fluorescent probe with a low molecular weight can be applied to the diagnosis of Zn osmosis into a cell or tissue on the basis of fluorescence intensity.","PeriodicalId":17480,"journal":{"name":"Journal of Water and Environment Technology","volume":"19 1","pages":"49-63"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Visualization and Quantification of the Impact of Humic Acid on Zinc Accumulation in Aquatic Plants Using a Low-Molecular-Weight Fluorescent Probe\",\"authors\":\"T.A.O.K. Meetiyagoda, K. Fadilah, Masayori Hagimori, M. D. H. J. Senavirathna, T. Fujino\",\"doi\":\"10.2965/JWET.20-110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main aims of this study were to investigate the impact of humic acid (HA) on zinc (Zn) accumulation in aquatic plants and to study a low-molecular-weight Zn2+-selective fluorescent probe to visualize and quantify the tissue-level Zn concentrations. Ceratophyllum demersum and Aldrovanda vesiculosa were exposed to solutions containing Zn (1 and 3 mg/L), HA (0.5 mg/L), and Zn with HA for nine days. The Zn accumulation (mg/g) in the plants was measured by ICP-OES and we applied a Zn2+-selective fluorescent probe with a low molecular weight to the analysis of Zn in C. demersum plant cells using fluorescence microscopy and ImageJ software. The application of HA reduced the Zn accumulation significantly (p < 0.05) and increased the chlorophyll concentration slightly less significantly (p > 0.05) in both plants. Results obtained from ImageJ revealed a strong positive correlation between fluorescence intensity and the Zn accumulation in C. demersum (r = 0.988). We showed that the application of HA reduced the Zn accumulation in both plants, and successfully visualized and quantified that a Zn2+-selective fluorescent probe with a low molecular weight can be applied to the diagnosis of Zn osmosis into a cell or tissue on the basis of fluorescence intensity.\",\"PeriodicalId\":17480,\"journal\":{\"name\":\"Journal of Water and Environment Technology\",\"volume\":\"19 1\",\"pages\":\"49-63\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Water and Environment Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2965/JWET.20-110\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Water and Environment Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2965/JWET.20-110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Environmental Science","Score":null,"Total":0}
Visualization and Quantification of the Impact of Humic Acid on Zinc Accumulation in Aquatic Plants Using a Low-Molecular-Weight Fluorescent Probe
The main aims of this study were to investigate the impact of humic acid (HA) on zinc (Zn) accumulation in aquatic plants and to study a low-molecular-weight Zn2+-selective fluorescent probe to visualize and quantify the tissue-level Zn concentrations. Ceratophyllum demersum and Aldrovanda vesiculosa were exposed to solutions containing Zn (1 and 3 mg/L), HA (0.5 mg/L), and Zn with HA for nine days. The Zn accumulation (mg/g) in the plants was measured by ICP-OES and we applied a Zn2+-selective fluorescent probe with a low molecular weight to the analysis of Zn in C. demersum plant cells using fluorescence microscopy and ImageJ software. The application of HA reduced the Zn accumulation significantly (p < 0.05) and increased the chlorophyll concentration slightly less significantly (p > 0.05) in both plants. Results obtained from ImageJ revealed a strong positive correlation between fluorescence intensity and the Zn accumulation in C. demersum (r = 0.988). We showed that the application of HA reduced the Zn accumulation in both plants, and successfully visualized and quantified that a Zn2+-selective fluorescent probe with a low molecular weight can be applied to the diagnosis of Zn osmosis into a cell or tissue on the basis of fluorescence intensity.
期刊介绍:
The Journal of Water and Environment Technology is an Open Access, fully peer-reviewed international journal for all aspects of the science, technology and management of water and the environment. The journal’s articles are clearly placed in a broader context to be relevant and interesting to our global audience of researchers, engineers, water technologists, and policy makers. JWET is the official journal of the Japan Society on Water Environment (JSWE) published in English, and welcomes submissions that take basic, applied or modeling approaches to the interesting issues facing the field. Topics can include, but are not limited to: water environment, soil and groundwater, drinking water, biological treatment, physicochemical treatment, sludge and solid waste, toxicity, public health and risk assessment, test and analytical methods, environmental education and other issues. JWET also welcomes seminal studies that help lay the foundations for future research in the field. JWET is committed to an ethical, fair and rapid peer-review process. It is published six times per year. It has two article types: Original Articles and Review Articles.