Puvaneswaree Nalaya, S. Wahid, Halmi Effendi Mohd. Izuan
{"title":"不同温度下热解空果束生物炭的活性炭特性及其对五氯酚的吸附性能","authors":"Puvaneswaree Nalaya, S. Wahid, Halmi Effendi Mohd. Izuan","doi":"10.2965/jwet.20-013","DOIUrl":null,"url":null,"abstract":"Pentachlorophenol (PCP) has been used extensively in the wood preservation industry. It is highly persistent in the environment and toxic to living organisms. The present study investigated the effectiveness of an oil palm empty fruit bunch biochar (EFBB) pyrolyzed at 350, 550 and 650°C in adsorbing PCP as compared to a commercial activated carbon (AC). The ash content, surface area and aromaticity increased while the pore volume, cation exchange capacity, O/C and (O+N)/C molar ratios decreased as the pyrolysis temperature increased. Only the EFBB pyrolyzed at 350°C and the AC adsorbed the PCP while no PCP adsorption was observed on the EFBBs pyrolyzed at 550°C and 650°C. The Langmuir maximum adsorption capacity ( Q max ) values was 6.035 mg g −1 , and 126.582 mg g −1 for the 350°C EFBB and the AC, respectively. The higher porosity and more oxygenated functional groups of the EFBB pyrolyzed at 350°C EFBB could be the reason for its ability to adsorb the PCP compared to the other EFBBs. The high PCP sorption by the AC on the other hand, could be attributed to its high surface area and microporous structure.","PeriodicalId":17480,"journal":{"name":"Journal of Water and Environment Technology","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Characterization of Empty Fruit Bunch Biochar Pyrolyzed at Different Temperatures with Respect to Activated Carbon and their Sorption Capacities for Pentachlorophenol\",\"authors\":\"Puvaneswaree Nalaya, S. Wahid, Halmi Effendi Mohd. Izuan\",\"doi\":\"10.2965/jwet.20-013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pentachlorophenol (PCP) has been used extensively in the wood preservation industry. It is highly persistent in the environment and toxic to living organisms. The present study investigated the effectiveness of an oil palm empty fruit bunch biochar (EFBB) pyrolyzed at 350, 550 and 650°C in adsorbing PCP as compared to a commercial activated carbon (AC). The ash content, surface area and aromaticity increased while the pore volume, cation exchange capacity, O/C and (O+N)/C molar ratios decreased as the pyrolysis temperature increased. Only the EFBB pyrolyzed at 350°C and the AC adsorbed the PCP while no PCP adsorption was observed on the EFBBs pyrolyzed at 550°C and 650°C. The Langmuir maximum adsorption capacity ( Q max ) values was 6.035 mg g −1 , and 126.582 mg g −1 for the 350°C EFBB and the AC, respectively. The higher porosity and more oxygenated functional groups of the EFBB pyrolyzed at 350°C EFBB could be the reason for its ability to adsorb the PCP compared to the other EFBBs. The high PCP sorption by the AC on the other hand, could be attributed to its high surface area and microporous structure.\",\"PeriodicalId\":17480,\"journal\":{\"name\":\"Journal of Water and Environment Technology\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Water and Environment Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2965/jwet.20-013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Water and Environment Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2965/jwet.20-013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Environmental Science","Score":null,"Total":0}
Characterization of Empty Fruit Bunch Biochar Pyrolyzed at Different Temperatures with Respect to Activated Carbon and their Sorption Capacities for Pentachlorophenol
Pentachlorophenol (PCP) has been used extensively in the wood preservation industry. It is highly persistent in the environment and toxic to living organisms. The present study investigated the effectiveness of an oil palm empty fruit bunch biochar (EFBB) pyrolyzed at 350, 550 and 650°C in adsorbing PCP as compared to a commercial activated carbon (AC). The ash content, surface area and aromaticity increased while the pore volume, cation exchange capacity, O/C and (O+N)/C molar ratios decreased as the pyrolysis temperature increased. Only the EFBB pyrolyzed at 350°C and the AC adsorbed the PCP while no PCP adsorption was observed on the EFBBs pyrolyzed at 550°C and 650°C. The Langmuir maximum adsorption capacity ( Q max ) values was 6.035 mg g −1 , and 126.582 mg g −1 for the 350°C EFBB and the AC, respectively. The higher porosity and more oxygenated functional groups of the EFBB pyrolyzed at 350°C EFBB could be the reason for its ability to adsorb the PCP compared to the other EFBBs. The high PCP sorption by the AC on the other hand, could be attributed to its high surface area and microporous structure.
期刊介绍:
The Journal of Water and Environment Technology is an Open Access, fully peer-reviewed international journal for all aspects of the science, technology and management of water and the environment. The journal’s articles are clearly placed in a broader context to be relevant and interesting to our global audience of researchers, engineers, water technologists, and policy makers. JWET is the official journal of the Japan Society on Water Environment (JSWE) published in English, and welcomes submissions that take basic, applied or modeling approaches to the interesting issues facing the field. Topics can include, but are not limited to: water environment, soil and groundwater, drinking water, biological treatment, physicochemical treatment, sludge and solid waste, toxicity, public health and risk assessment, test and analytical methods, environmental education and other issues. JWET also welcomes seminal studies that help lay the foundations for future research in the field. JWET is committed to an ethical, fair and rapid peer-review process. It is published six times per year. It has two article types: Original Articles and Review Articles.