{"title":"太泽湖酸化后三种营养水平水生生物的短期慢性毒性试验","authors":"Juhyun Kim, S. Masuda, S. Harada, O. Nishimura","doi":"10.2965/jwet.19-046","DOIUrl":null,"url":null,"abstract":"Lake Tazawa in Akita Prefecture, Japan, is an acidic lake caused by the inflow of low-pH water from Tamagawa Hot Springs. Because of this anthropogenic acidification, many indigenous fish species and aquatic ecosystem have perished. Although several counter-measures such as artificial neutralization have been implemented against the acidic waters of Tamagawa River flowing into Lake Tazawa, the pH level of the lake remained low. Therefore, a bioassay evaluation of the low-pH lake water is necessary for ecosystem restoration. In this study, short-term chronic toxicity tests were applied to observe biological responses of three trophic levels of aquatic organisms using water samples of Lake Tazawa. As a result, Lake Tazawa water has toxic effect on all tested aquatic organisms. Especially, the fish embryo/larvae was directly affected by low-pH water, while algae and crustaceans were affected not only by low pH but other factors such as fluorine ion and metals. In order to improve the water quality management of Lake Tazawa for ecosystem restoration, further efforts are needed to reduce multiple toxic substances in addition to the pH neutralization of lake water.","PeriodicalId":17480,"journal":{"name":"Journal of Water and Environment Technology","volume":"1 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Short-term Chronic Toxicity Tests on Acidified Lake Tazawa Using Responses of Three Trophic Levels of Aquatic Organisms\",\"authors\":\"Juhyun Kim, S. Masuda, S. Harada, O. Nishimura\",\"doi\":\"10.2965/jwet.19-046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lake Tazawa in Akita Prefecture, Japan, is an acidic lake caused by the inflow of low-pH water from Tamagawa Hot Springs. Because of this anthropogenic acidification, many indigenous fish species and aquatic ecosystem have perished. Although several counter-measures such as artificial neutralization have been implemented against the acidic waters of Tamagawa River flowing into Lake Tazawa, the pH level of the lake remained low. Therefore, a bioassay evaluation of the low-pH lake water is necessary for ecosystem restoration. In this study, short-term chronic toxicity tests were applied to observe biological responses of three trophic levels of aquatic organisms using water samples of Lake Tazawa. As a result, Lake Tazawa water has toxic effect on all tested aquatic organisms. Especially, the fish embryo/larvae was directly affected by low-pH water, while algae and crustaceans were affected not only by low pH but other factors such as fluorine ion and metals. In order to improve the water quality management of Lake Tazawa for ecosystem restoration, further efforts are needed to reduce multiple toxic substances in addition to the pH neutralization of lake water.\",\"PeriodicalId\":17480,\"journal\":{\"name\":\"Journal of Water and Environment Technology\",\"volume\":\"1 1\",\"pages\":\"1-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Water and Environment Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2965/jwet.19-046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Water and Environment Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2965/jwet.19-046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Environmental Science","Score":null,"Total":0}
Short-term Chronic Toxicity Tests on Acidified Lake Tazawa Using Responses of Three Trophic Levels of Aquatic Organisms
Lake Tazawa in Akita Prefecture, Japan, is an acidic lake caused by the inflow of low-pH water from Tamagawa Hot Springs. Because of this anthropogenic acidification, many indigenous fish species and aquatic ecosystem have perished. Although several counter-measures such as artificial neutralization have been implemented against the acidic waters of Tamagawa River flowing into Lake Tazawa, the pH level of the lake remained low. Therefore, a bioassay evaluation of the low-pH lake water is necessary for ecosystem restoration. In this study, short-term chronic toxicity tests were applied to observe biological responses of three trophic levels of aquatic organisms using water samples of Lake Tazawa. As a result, Lake Tazawa water has toxic effect on all tested aquatic organisms. Especially, the fish embryo/larvae was directly affected by low-pH water, while algae and crustaceans were affected not only by low pH but other factors such as fluorine ion and metals. In order to improve the water quality management of Lake Tazawa for ecosystem restoration, further efforts are needed to reduce multiple toxic substances in addition to the pH neutralization of lake water.
期刊介绍:
The Journal of Water and Environment Technology is an Open Access, fully peer-reviewed international journal for all aspects of the science, technology and management of water and the environment. The journal’s articles are clearly placed in a broader context to be relevant and interesting to our global audience of researchers, engineers, water technologists, and policy makers. JWET is the official journal of the Japan Society on Water Environment (JSWE) published in English, and welcomes submissions that take basic, applied or modeling approaches to the interesting issues facing the field. Topics can include, but are not limited to: water environment, soil and groundwater, drinking water, biological treatment, physicochemical treatment, sludge and solid waste, toxicity, public health and risk assessment, test and analytical methods, environmental education and other issues. JWET also welcomes seminal studies that help lay the foundations for future research in the field. JWET is committed to an ethical, fair and rapid peer-review process. It is published six times per year. It has two article types: Original Articles and Review Articles.