{"title":"光镊与多光子复合制造多材料","authors":"M. Askari, C. Tuck, Q. Hu, R. Hague, R. Wildman","doi":"10.2961/jlmn.2019.01.0014","DOIUrl":null,"url":null,"abstract":"Multi-Photon Polymerization (MPP) is a technique used to fabricate complex micro-scale 3D structures using ultra-short laser pulses. Typically, MPP is used to manufacture micron-scale components in photopolymer materials. However, the development of micron scale processes that can produce components from multiple materials within a single manufacturing step would be advantageous. This would allow the inclusion of particles that are manipulated and embedded within structures with sub-micron feature sizes. To achieve this, an MPP system was combined with an optical trapping (OT) setup in order to independently manipulate microparticles in the x, y and z planes. Particles were transported into the fabrication site using the OT and encapsulated using the MPP laser. Here it is shown that combining the OT capabilities with an additive manufacturing technique enables the production of complex multi-material artifacts.","PeriodicalId":54788,"journal":{"name":"Journal of Laser Micro Nanoengineering","volume":"198 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Multimaterial Manufacture Through Combining Optical Tweezers with Multiphoton Fabrication\",\"authors\":\"M. Askari, C. Tuck, Q. Hu, R. Hague, R. Wildman\",\"doi\":\"10.2961/jlmn.2019.01.0014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-Photon Polymerization (MPP) is a technique used to fabricate complex micro-scale 3D structures using ultra-short laser pulses. Typically, MPP is used to manufacture micron-scale components in photopolymer materials. However, the development of micron scale processes that can produce components from multiple materials within a single manufacturing step would be advantageous. This would allow the inclusion of particles that are manipulated and embedded within structures with sub-micron feature sizes. To achieve this, an MPP system was combined with an optical trapping (OT) setup in order to independently manipulate microparticles in the x, y and z planes. Particles were transported into the fabrication site using the OT and encapsulated using the MPP laser. Here it is shown that combining the OT capabilities with an additive manufacturing technique enables the production of complex multi-material artifacts.\",\"PeriodicalId\":54788,\"journal\":{\"name\":\"Journal of Laser Micro Nanoengineering\",\"volume\":\"198 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Laser Micro Nanoengineering\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.2961/jlmn.2019.01.0014\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Laser Micro Nanoengineering","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.2961/jlmn.2019.01.0014","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Multimaterial Manufacture Through Combining Optical Tweezers with Multiphoton Fabrication
Multi-Photon Polymerization (MPP) is a technique used to fabricate complex micro-scale 3D structures using ultra-short laser pulses. Typically, MPP is used to manufacture micron-scale components in photopolymer materials. However, the development of micron scale processes that can produce components from multiple materials within a single manufacturing step would be advantageous. This would allow the inclusion of particles that are manipulated and embedded within structures with sub-micron feature sizes. To achieve this, an MPP system was combined with an optical trapping (OT) setup in order to independently manipulate microparticles in the x, y and z planes. Particles were transported into the fabrication site using the OT and encapsulated using the MPP laser. Here it is shown that combining the OT capabilities with an additive manufacturing technique enables the production of complex multi-material artifacts.
期刊介绍:
Journal of Laser Micro/Nanoengineering, founded in 2005 by Japan Laser Processing Society (JLPS), is an international online journal for the rapid publication of experimental and theoretical investigations in laser-based technology for micro- and nano-engineering. Access to the full article is provided free of charge.
JLMN publishes regular articles, technical communications, and invited papers about new results related to laser-based technology for micro and nano engineering. The articles oriented to dominantly technical or industrial developments containing interesting and useful information may be considered as technical communications.