这是什么?

C. Batista, Carolina Yumi Lemos Ferreira Graciolli
{"title":"这是什么?","authors":"C. Batista, Carolina Yumi Lemos Ferreira Graciolli","doi":"10.30938/BOCEHM.V8I24.4616","DOIUrl":null,"url":null,"abstract":"Neste texto, discutimos aspectos da constituição da Geometria Euclidiana como um campo da ciência, tendo como objetivo compreender se as geometrias que se constituem a partir desse campo do conhecimento podem ser consideradas novas. Na busca por tais compreensões, elegemos dois “tipos” de Geometria: a Geometria Dinâmica e a Geometria do Origami e adentramos em um movimento de reflexão de cunho histórico e filosófico, por meio do qual lançamos questionamentos que nos levam a uma compreensão. Olhamos para a Geometria Dinâmica na perspectiva filosófica da fenomenologia, para a qual a dinamicidade pode ser compreendida a partir da ideia de movimento do sujeito e da concepção de intencionalidade. Relativamente à Geometria do Origami, nossa compreensão se deu a partir dos seis axiomas de Huzita e da potencialidade deles para a resolução de situações que não podem ser solucionadas somente por meio da Geometria Euclidiana. À medida que avança, a discussão nos leva à origem da Geometria, isto é, ao modo pelo qual ela se constituiu como um campo científico, bem como à maneira pela qual a Geometria Euclidiana, organizada por meio de um sistema axiomático, favoreceu uma abertura para que outras formas de pensar esse campo da ciência se tornassem possíveis. A partir de nossa análise e discussão, foi possível destacar o modo dessas geometrias de se mostrarem como uma possibilidade para avançar em relação aos conhecimentos da Geometria Euclidiana, quais sejam, a Geometria Dinâmica, tornando explícita a relação de movimento com objetos geométricos, e a Geometria do Origami, constituindo-se por meio de um sistema axiomático.","PeriodicalId":52692,"journal":{"name":"Boletim Cearense de Educacao e Historia da Matematica","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"O que é isto?\",\"authors\":\"C. Batista, Carolina Yumi Lemos Ferreira Graciolli\",\"doi\":\"10.30938/BOCEHM.V8I24.4616\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neste texto, discutimos aspectos da constituição da Geometria Euclidiana como um campo da ciência, tendo como objetivo compreender se as geometrias que se constituem a partir desse campo do conhecimento podem ser consideradas novas. Na busca por tais compreensões, elegemos dois “tipos” de Geometria: a Geometria Dinâmica e a Geometria do Origami e adentramos em um movimento de reflexão de cunho histórico e filosófico, por meio do qual lançamos questionamentos que nos levam a uma compreensão. Olhamos para a Geometria Dinâmica na perspectiva filosófica da fenomenologia, para a qual a dinamicidade pode ser compreendida a partir da ideia de movimento do sujeito e da concepção de intencionalidade. Relativamente à Geometria do Origami, nossa compreensão se deu a partir dos seis axiomas de Huzita e da potencialidade deles para a resolução de situações que não podem ser solucionadas somente por meio da Geometria Euclidiana. À medida que avança, a discussão nos leva à origem da Geometria, isto é, ao modo pelo qual ela se constituiu como um campo científico, bem como à maneira pela qual a Geometria Euclidiana, organizada por meio de um sistema axiomático, favoreceu uma abertura para que outras formas de pensar esse campo da ciência se tornassem possíveis. A partir de nossa análise e discussão, foi possível destacar o modo dessas geometrias de se mostrarem como uma possibilidade para avançar em relação aos conhecimentos da Geometria Euclidiana, quais sejam, a Geometria Dinâmica, tornando explícita a relação de movimento com objetos geométricos, e a Geometria do Origami, constituindo-se por meio de um sistema axiomático.\",\"PeriodicalId\":52692,\"journal\":{\"name\":\"Boletim Cearense de Educacao e Historia da Matematica\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Boletim Cearense de Educacao e Historia da Matematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30938/BOCEHM.V8I24.4616\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Boletim Cearense de Educacao e Historia da Matematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30938/BOCEHM.V8I24.4616","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这篇文章中,我们讨论了欧几里得几何作为一个科学领域的构成方面,旨在理解构成这一知识领域的几何是否可以被认为是新的。在寻找这样的理解的过程中,我们选择了两种几何“类型”:动态几何和折纸几何,并进入了一场历史和哲学性质的反思运动,通过这一运动,我们提出了引导我们理解的问题。我们从现象学的哲学角度来看待动态几何学,动态几何学可以从主体运动的概念和意向性的概念来理解。关于折纸几何,我们的理解来自于胡兹塔的六个公理,以及它们解决仅靠欧几里得几何无法解决的情况的潜力。随着发展,我们讨论导致几何的起源,这是她的方式,构成一个科学领域以及欧氏几何的方法,通过一个公理系统,通过一个开放的思维,科学领域成为了可能。从我们的分析和讨论,有可能这些几何图形的方式强调的是作为一个可能的欧几里德几何学知识前进,这是一个明确的动态几何,使运动关系和几何对象和几何的折纸,通过一个公理系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
O que é isto?
Neste texto, discutimos aspectos da constituição da Geometria Euclidiana como um campo da ciência, tendo como objetivo compreender se as geometrias que se constituem a partir desse campo do conhecimento podem ser consideradas novas. Na busca por tais compreensões, elegemos dois “tipos” de Geometria: a Geometria Dinâmica e a Geometria do Origami e adentramos em um movimento de reflexão de cunho histórico e filosófico, por meio do qual lançamos questionamentos que nos levam a uma compreensão. Olhamos para a Geometria Dinâmica na perspectiva filosófica da fenomenologia, para a qual a dinamicidade pode ser compreendida a partir da ideia de movimento do sujeito e da concepção de intencionalidade. Relativamente à Geometria do Origami, nossa compreensão se deu a partir dos seis axiomas de Huzita e da potencialidade deles para a resolução de situações que não podem ser solucionadas somente por meio da Geometria Euclidiana. À medida que avança, a discussão nos leva à origem da Geometria, isto é, ao modo pelo qual ela se constituiu como um campo científico, bem como à maneira pela qual a Geometria Euclidiana, organizada por meio de um sistema axiomático, favoreceu uma abertura para que outras formas de pensar esse campo da ciência se tornassem possíveis. A partir de nossa análise e discussão, foi possível destacar o modo dessas geometrias de se mostrarem como uma possibilidade para avançar em relação aos conhecimentos da Geometria Euclidiana, quais sejam, a Geometria Dinâmica, tornando explícita a relação de movimento com objetos geométricos, e a Geometria do Origami, constituindo-se por meio de um sistema axiomático.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
39
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信