一种求解COVID-19模型的可靠数值模拟技术

IF 0.5 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS
Mahdi A. Sabea, M. A. Mohammed
{"title":"一种求解COVID-19模型的可靠数值模拟技术","authors":"Mahdi A. Sabea, M. A. Mohammed","doi":"10.28919/cmbn/7959","DOIUrl":null,"url":null,"abstract":". The nature of epidemiological models is characterized by randomness in their coefficients, while the classical or analytical and numerical methods deal with systems with fixed coefficients, which makes these methods inappropriate for solutions of epidemiological systems that have coefficients that change with time. For that, the numerical simulation methods that deal with time change are more appropriate than other ways. The aim of the research is to apply some of these methods to the COVID-19 system. Two efficient methods used for previous studies are used to solve this system, which are Monte Carlo Finite Difference Method and Mean Latin Hypercube Finite Difference Method. For the sake of comparison, a numerical method, the finite difference method, is used to solve this system. We have reached good results that give an analysis and impression of the behavior of the Covid 19 epidemic since its inception and predict its behavior for the next years. All results have been written in graphs and tabulated.","PeriodicalId":44079,"journal":{"name":"Communications in Mathematical Biology and Neuroscience","volume":"1 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A reliable numerical simulation technique for solving COVID-19 model\",\"authors\":\"Mahdi A. Sabea, M. A. Mohammed\",\"doi\":\"10.28919/cmbn/7959\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". The nature of epidemiological models is characterized by randomness in their coefficients, while the classical or analytical and numerical methods deal with systems with fixed coefficients, which makes these methods inappropriate for solutions of epidemiological systems that have coefficients that change with time. For that, the numerical simulation methods that deal with time change are more appropriate than other ways. The aim of the research is to apply some of these methods to the COVID-19 system. Two efficient methods used for previous studies are used to solve this system, which are Monte Carlo Finite Difference Method and Mean Latin Hypercube Finite Difference Method. For the sake of comparison, a numerical method, the finite difference method, is used to solve this system. We have reached good results that give an analysis and impression of the behavior of the Covid 19 epidemic since its inception and predict its behavior for the next years. All results have been written in graphs and tabulated.\",\"PeriodicalId\":44079,\"journal\":{\"name\":\"Communications in Mathematical Biology and Neuroscience\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematical Biology and Neuroscience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.28919/cmbn/7959\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Biology and Neuroscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28919/cmbn/7959","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

。流行病学模型的特点是其系数具有随机性,而经典方法或解析方法和数值方法处理的是固定系数的系统,这使得这些方法不适用于具有随时间变化的系数的流行病学系统的解。因此,处理时间变化的数值模拟方法比其他方法更合适。这项研究的目的是将其中一些方法应用于COVID-19系统。利用以往研究中常用的两种有效方法,即蒙特卡罗有限差分法和平均拉丁超立方有限差分法来求解该系统。为便于比较,本文采用有限差分法对该系统进行数值求解。我们已经取得了很好的结果,可以对Covid - 19流行病自开始以来的行为进行分析和印象,并预测其未来几年的行为。所有的结果都以图表和表格的形式写出来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A reliable numerical simulation technique for solving COVID-19 model
. The nature of epidemiological models is characterized by randomness in their coefficients, while the classical or analytical and numerical methods deal with systems with fixed coefficients, which makes these methods inappropriate for solutions of epidemiological systems that have coefficients that change with time. For that, the numerical simulation methods that deal with time change are more appropriate than other ways. The aim of the research is to apply some of these methods to the COVID-19 system. Two efficient methods used for previous studies are used to solve this system, which are Monte Carlo Finite Difference Method and Mean Latin Hypercube Finite Difference Method. For the sake of comparison, a numerical method, the finite difference method, is used to solve this system. We have reached good results that give an analysis and impression of the behavior of the Covid 19 epidemic since its inception and predict its behavior for the next years. All results have been written in graphs and tabulated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Mathematical Biology and Neuroscience
Communications in Mathematical Biology and Neuroscience COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
2.10
自引率
15.40%
发文量
80
期刊介绍: Communications in Mathematical Biology and Neuroscience (CMBN) is a peer-reviewed open access international journal, which is aimed to provide a publication forum for important research in all aspects of mathematical biology and neuroscience. This journal will accept high quality articles containing original research results and survey articles of exceptional merit.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信