基于卷积神经网络的covid-19筛查模型

Q3 Engineering
Ashish Nainwal, G. K. Malik, A. Jangra
{"title":"基于卷积神经网络的covid-19筛查模型","authors":"Ashish Nainwal, G. K. Malik, A. Jangra","doi":"10.25728/assa.2021.21.3.1100","DOIUrl":null,"url":null,"abstract":"Coronavirus Disease 2019 (COVID-19) is a high death rate respiratory condition that requires easy-to-reach markers for prediction. The electrocardiograph (ECG) alterations that may occur after COVID-19 hospitalization have not been fully studied yet. COVID-19 also affects heart function, which can be seen on an ECG. As a result, ECG can be used to detect virus-infected individuals. The database consists of ECG images. In this scenario, a convolution neural network (CNN) is utilized to classify COVID-19 ECG. The model is made up of eight layers, including a convolution layer, a max-pooling layer and a dense layer. The ECG image is fed into a CNN model, which classifies the COVID-19 ECG. The model provides us with 98.11% accuracy, 98.6% sensitivity and 96.40% specificity. Although 100.00% of the categorization of normal images and COVID-19 ECGs were not accurately determined by the proposed CNN model, this is the first CNN model to categorize ECG images into normal and COVID-19 classes from the ECG database and provide additional diagnostic to medical experts. © 2021 ASSA.","PeriodicalId":39095,"journal":{"name":"Advances in Systems Science and Applications","volume":"21 1","pages":"31-39"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convolution neural network based covid-19 screening model\",\"authors\":\"Ashish Nainwal, G. K. Malik, A. Jangra\",\"doi\":\"10.25728/assa.2021.21.3.1100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Coronavirus Disease 2019 (COVID-19) is a high death rate respiratory condition that requires easy-to-reach markers for prediction. The electrocardiograph (ECG) alterations that may occur after COVID-19 hospitalization have not been fully studied yet. COVID-19 also affects heart function, which can be seen on an ECG. As a result, ECG can be used to detect virus-infected individuals. The database consists of ECG images. In this scenario, a convolution neural network (CNN) is utilized to classify COVID-19 ECG. The model is made up of eight layers, including a convolution layer, a max-pooling layer and a dense layer. The ECG image is fed into a CNN model, which classifies the COVID-19 ECG. The model provides us with 98.11% accuracy, 98.6% sensitivity and 96.40% specificity. Although 100.00% of the categorization of normal images and COVID-19 ECGs were not accurately determined by the proposed CNN model, this is the first CNN model to categorize ECG images into normal and COVID-19 classes from the ECG database and provide additional diagnostic to medical experts. © 2021 ASSA.\",\"PeriodicalId\":39095,\"journal\":{\"name\":\"Advances in Systems Science and Applications\",\"volume\":\"21 1\",\"pages\":\"31-39\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Systems Science and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.25728/assa.2021.21.3.1100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Systems Science and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25728/assa.2021.21.3.1100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

2019冠状病毒病(COVID-19)是一种高死亡率的呼吸系统疾病,需要易于到达的标志物进行预测。COVID-19住院后可能发生的心电图改变尚未得到充分研究。COVID-19还会影响心脏功能,这可以从心电图上看到。因此,心电图可用于检测病毒感染者。该数据库由心电图像组成。在这种情况下,使用卷积神经网络(CNN)对COVID-19 ECG进行分类。该模型由8层组成,包括卷积层、最大池化层和密集层。将ECG图像输入到CNN模型中,该模型对COVID-19 ECG进行分类。该模型的准确率为98.11%,灵敏度为98.6%,特异性为96.40%。虽然100.00%的正常图像和COVID-19心电图的分类不能被所提出的CNN模型准确地确定,但这是第一个将ECG图像从ECG数据库中分类为正常和COVID-19类别并为医学专家提供额外诊断的CNN模型。©2021 assa。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Convolution neural network based covid-19 screening model
Coronavirus Disease 2019 (COVID-19) is a high death rate respiratory condition that requires easy-to-reach markers for prediction. The electrocardiograph (ECG) alterations that may occur after COVID-19 hospitalization have not been fully studied yet. COVID-19 also affects heart function, which can be seen on an ECG. As a result, ECG can be used to detect virus-infected individuals. The database consists of ECG images. In this scenario, a convolution neural network (CNN) is utilized to classify COVID-19 ECG. The model is made up of eight layers, including a convolution layer, a max-pooling layer and a dense layer. The ECG image is fed into a CNN model, which classifies the COVID-19 ECG. The model provides us with 98.11% accuracy, 98.6% sensitivity and 96.40% specificity. Although 100.00% of the categorization of normal images and COVID-19 ECGs were not accurately determined by the proposed CNN model, this is the first CNN model to categorize ECG images into normal and COVID-19 classes from the ECG database and provide additional diagnostic to medical experts. © 2021 ASSA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Systems Science and Applications
Advances in Systems Science and Applications Engineering-Engineering (all)
CiteScore
1.20
自引率
0.00%
发文量
0
期刊介绍: Advances in Systems Science and Applications (ASSA) is an international peer-reviewed open-source online academic journal. Its scope covers all major aspects of systems (and processes) analysis, modeling, simulation, and control, ranging from theoretical and methodological developments to a large variety of application areas. Survey articles and innovative results are also welcome. ASSA is aimed at the audience of scientists, engineers and researchers working in the framework of these problems. ASSA should be a platform on which researchers will be able to communicate and discuss both their specialized issues and interdisciplinary problems of systems analysis and its applications in science and industry, including data science, artificial intelligence, material science, manufacturing, transportation, power and energy, ecology, corporate management, public governance, finance, and many others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信