求解非线性方程的一种新的三阶迭代方法

M. Saqib, Zain Majeed, M. Quraish, W. Nazeer
{"title":"求解非线性方程的一种新的三阶迭代方法","authors":"M. Saqib, Zain Majeed, M. Quraish, W. Nazeer","doi":"10.30538/PSRP-OMA2018.0007","DOIUrl":null,"url":null,"abstract":"In this paper, we establish a two step third-order iteration method for solving nonlinear equations. The efficiency index of the method is 1.442 which is greater than Newton-Raphson method. It is important to note that our method is performing very well in comparison to fixed point method and the method discussed by Kang et al. (Abstract and applied analysis; volume 2013, Article ID 487060). AMS Mathematics Subject Classification: 47H05, 47H09, 47H10.","PeriodicalId":52741,"journal":{"name":"Open Journal of Mathematical Analysis","volume":"192 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A New Third-Order Iteration Method for Solving Nonlinear Equations\",\"authors\":\"M. Saqib, Zain Majeed, M. Quraish, W. Nazeer\",\"doi\":\"10.30538/PSRP-OMA2018.0007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we establish a two step third-order iteration method for solving nonlinear equations. The efficiency index of the method is 1.442 which is greater than Newton-Raphson method. It is important to note that our method is performing very well in comparison to fixed point method and the method discussed by Kang et al. (Abstract and applied analysis; volume 2013, Article ID 487060). AMS Mathematics Subject Classification: 47H05, 47H09, 47H10.\",\"PeriodicalId\":52741,\"journal\":{\"name\":\"Open Journal of Mathematical Analysis\",\"volume\":\"192 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Journal of Mathematical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30538/PSRP-OMA2018.0007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Journal of Mathematical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30538/PSRP-OMA2018.0007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文建立了求解非线性方程的两步三阶迭代法。该方法的效率指数为1.442,优于Newton-Raphson方法。值得注意的是,与不动点法和Kang等人讨论的方法相比,我们的方法表现得非常好。(摘要和应用分析;卷2013,文章ID 487060)。AMS数学学科分类:47H05, 47H09, 47H10。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A New Third-Order Iteration Method for Solving Nonlinear Equations
In this paper, we establish a two step third-order iteration method for solving nonlinear equations. The efficiency index of the method is 1.442 which is greater than Newton-Raphson method. It is important to note that our method is performing very well in comparison to fixed point method and the method discussed by Kang et al. (Abstract and applied analysis; volume 2013, Article ID 487060). AMS Mathematics Subject Classification: 47H05, 47H09, 47H10.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
10
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信