D. Steinerová, A. Kalendová, J. Machotová, M. Kohl
{"title":"含MeO纳米颗粒的新型丙烯酸酯粘结剂的防腐涂料","authors":"D. Steinerová, A. Kalendová, J. Machotová, M. Kohl","doi":"10.2478/kom-2019-0020","DOIUrl":null,"url":null,"abstract":"Abstract Water based paints are increasingly attracting interest mainly with a view to reducing air pollution with volatile organic compounds (VOC). However, the protective properties of water-based paints are inferior to those of solvent-based paints and so new ways to increase the resistance of water-based systems are sought. The present contribution describes the preparation and testing of environmentally friendly anti-corrosion paints based on novel water-based self-crosslinking acrylate latexes containing appropriate pigments and ZnO or MgO nanoparticles at a concentration of 1.5 % (with respect to the monomers) compared to the same systems free from the nanoparticles. Both the effect of the MeO nanoparticles and the effects of the pigment species and particle shapes on the paint film properties were examined. The MeO nanoparticles were found to improve all the properties tested. The latexes with MgO exhibited the highest resistance to flash corrosion while the latexes with ZnO exhibited the highest anticorrosion resistance. Furthermore, the systems with the calcium-aluminium polyphosphosilicate based pigment were superior to all the remaining systems in this respect. It is concluded that binders with nanoparticles can be used as a basis for anticorrosion coatings provided that a suitable pigment is selected.","PeriodicalId":17911,"journal":{"name":"Koroze a ochrana materialu","volume":"63 1","pages":"153 - 158"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anticorrosion coatings based on novel acrylate binders containing MeO nanoparticles\",\"authors\":\"D. Steinerová, A. Kalendová, J. Machotová, M. Kohl\",\"doi\":\"10.2478/kom-2019-0020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Water based paints are increasingly attracting interest mainly with a view to reducing air pollution with volatile organic compounds (VOC). However, the protective properties of water-based paints are inferior to those of solvent-based paints and so new ways to increase the resistance of water-based systems are sought. The present contribution describes the preparation and testing of environmentally friendly anti-corrosion paints based on novel water-based self-crosslinking acrylate latexes containing appropriate pigments and ZnO or MgO nanoparticles at a concentration of 1.5 % (with respect to the monomers) compared to the same systems free from the nanoparticles. Both the effect of the MeO nanoparticles and the effects of the pigment species and particle shapes on the paint film properties were examined. The MeO nanoparticles were found to improve all the properties tested. The latexes with MgO exhibited the highest resistance to flash corrosion while the latexes with ZnO exhibited the highest anticorrosion resistance. Furthermore, the systems with the calcium-aluminium polyphosphosilicate based pigment were superior to all the remaining systems in this respect. It is concluded that binders with nanoparticles can be used as a basis for anticorrosion coatings provided that a suitable pigment is selected.\",\"PeriodicalId\":17911,\"journal\":{\"name\":\"Koroze a ochrana materialu\",\"volume\":\"63 1\",\"pages\":\"153 - 158\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Koroze a ochrana materialu\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/kom-2019-0020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Koroze a ochrana materialu","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/kom-2019-0020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Materials Science","Score":null,"Total":0}
Anticorrosion coatings based on novel acrylate binders containing MeO nanoparticles
Abstract Water based paints are increasingly attracting interest mainly with a view to reducing air pollution with volatile organic compounds (VOC). However, the protective properties of water-based paints are inferior to those of solvent-based paints and so new ways to increase the resistance of water-based systems are sought. The present contribution describes the preparation and testing of environmentally friendly anti-corrosion paints based on novel water-based self-crosslinking acrylate latexes containing appropriate pigments and ZnO or MgO nanoparticles at a concentration of 1.5 % (with respect to the monomers) compared to the same systems free from the nanoparticles. Both the effect of the MeO nanoparticles and the effects of the pigment species and particle shapes on the paint film properties were examined. The MeO nanoparticles were found to improve all the properties tested. The latexes with MgO exhibited the highest resistance to flash corrosion while the latexes with ZnO exhibited the highest anticorrosion resistance. Furthermore, the systems with the calcium-aluminium polyphosphosilicate based pigment were superior to all the remaining systems in this respect. It is concluded that binders with nanoparticles can be used as a basis for anticorrosion coatings provided that a suitable pigment is selected.