{"title":"关于p -adic曲线形式纤维的<s:1>基本群","authors":"Mohamed Saidi","doi":"10.2748/tmj/1585101621","DOIUrl":null,"url":null,"abstract":"We investigate a certain class of (geometric) finite (Galois) coverings of formal fibres of $p$-adic curves and the corresponding quotient of the (geometric) etale fundamental group. A key result in our investigation is that these (Galois) coverings can be compactified to finite (Galois) coverings of proper $p$-adic curves. We also prove that the maximal prime-to-$p$ quotient of the geometric etale fundamental group of a (geometrically connected) formal fibre of a $p$-adic curve is (pro-)prime-to-$p$ free of finite computable rank.","PeriodicalId":54427,"journal":{"name":"Tohoku Mathematical Journal","volume":"1 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2019-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On étale fundamental groups of formal fibres of $p$-adic curves\",\"authors\":\"Mohamed Saidi\",\"doi\":\"10.2748/tmj/1585101621\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate a certain class of (geometric) finite (Galois) coverings of formal fibres of $p$-adic curves and the corresponding quotient of the (geometric) etale fundamental group. A key result in our investigation is that these (Galois) coverings can be compactified to finite (Galois) coverings of proper $p$-adic curves. We also prove that the maximal prime-to-$p$ quotient of the geometric etale fundamental group of a (geometrically connected) formal fibre of a $p$-adic curve is (pro-)prime-to-$p$ free of finite computable rank.\",\"PeriodicalId\":54427,\"journal\":{\"name\":\"Tohoku Mathematical Journal\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2019-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tohoku Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2748/tmj/1585101621\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tohoku Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2748/tmj/1585101621","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
On étale fundamental groups of formal fibres of $p$-adic curves
We investigate a certain class of (geometric) finite (Galois) coverings of formal fibres of $p$-adic curves and the corresponding quotient of the (geometric) etale fundamental group. A key result in our investigation is that these (Galois) coverings can be compactified to finite (Galois) coverings of proper $p$-adic curves. We also prove that the maximal prime-to-$p$ quotient of the geometric etale fundamental group of a (geometrically connected) formal fibre of a $p$-adic curve is (pro-)prime-to-$p$ free of finite computable rank.