{"title":"聚苯胺-氨基-碳纳米管抗静电剂的合成及应用性能","authors":"Yihua Cui, Jinhua Gao, Shiping Lin, Weitian Chen, Jianwei Guo","doi":"10.1002/pol.20230018","DOIUrl":null,"url":null,"abstract":"<p>Emulsion polymerization was used to create composites of polyaniline-amino-carbon nanotubes (PANI-A-CNT). Fourier transform infrared spectroscopy (FT-IR) was used to examine the chemical bonding properties of PANI and carbon nanotubes in composite materials. Transmission electron microscopy (TEM) was used to confirm that the PANI layer on the core-shell structure of PANI-A-CNT material was nanoscale in size. In order to assess the impact of various carbon nanotube contents on the electrostatic and mechanical properties of the composites, pristine carbon nanotube/ABS (p-CNT/ABS) and PANI-A-CNT/ABS composites were prepared. The mass fractions of PANI and CNT in PANI-A-CNT were 93.7 and 6.3 wt%, respectively, according to thermogravimetric analysis (TGA); hence, 4 wt% of PANI-A-CNT included 0.3 wt% CNT and 3.7 wt% PANI. The surface resistance test revealed that the PANI-A-CNT/ABS composite with 4 wt% PANI-A-CNT has a surface resistance of 10<sup>8</sup> Ω, which is one time less than the surface resistance of the p-CNT/ABS composite with 4 wt% p-CNT. Moreover, PANI-A-CNT/ABS composite (0–4 wt% PANI-A-CNT) has stronger tensile and impact properties than p-CNT/ABS composite (0–4 wt% p-CNT), expanding the range of applications for ABS resin.</p>","PeriodicalId":199,"journal":{"name":"Journal of Polymer Science Part A: Polymer Chemistry","volume":"61 18","pages":"2103-2114"},"PeriodicalIF":2.7020,"publicationDate":"2023-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis and application properties of polyaniline-amino-carbon nanotube antistatic agents\",\"authors\":\"Yihua Cui, Jinhua Gao, Shiping Lin, Weitian Chen, Jianwei Guo\",\"doi\":\"10.1002/pol.20230018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Emulsion polymerization was used to create composites of polyaniline-amino-carbon nanotubes (PANI-A-CNT). Fourier transform infrared spectroscopy (FT-IR) was used to examine the chemical bonding properties of PANI and carbon nanotubes in composite materials. Transmission electron microscopy (TEM) was used to confirm that the PANI layer on the core-shell structure of PANI-A-CNT material was nanoscale in size. In order to assess the impact of various carbon nanotube contents on the electrostatic and mechanical properties of the composites, pristine carbon nanotube/ABS (p-CNT/ABS) and PANI-A-CNT/ABS composites were prepared. The mass fractions of PANI and CNT in PANI-A-CNT were 93.7 and 6.3 wt%, respectively, according to thermogravimetric analysis (TGA); hence, 4 wt% of PANI-A-CNT included 0.3 wt% CNT and 3.7 wt% PANI. The surface resistance test revealed that the PANI-A-CNT/ABS composite with 4 wt% PANI-A-CNT has a surface resistance of 10<sup>8</sup> Ω, which is one time less than the surface resistance of the p-CNT/ABS composite with 4 wt% p-CNT. Moreover, PANI-A-CNT/ABS composite (0–4 wt% PANI-A-CNT) has stronger tensile and impact properties than p-CNT/ABS composite (0–4 wt% p-CNT), expanding the range of applications for ABS resin.</p>\",\"PeriodicalId\":199,\"journal\":{\"name\":\"Journal of Polymer Science Part A: Polymer Chemistry\",\"volume\":\"61 18\",\"pages\":\"2103-2114\"},\"PeriodicalIF\":2.7020,\"publicationDate\":\"2023-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Polymer Science Part A: Polymer Chemistry\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/pol.20230018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymer Science Part A: Polymer Chemistry","FirstCategoryId":"1","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/pol.20230018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0
摘要
采用乳液聚合法制备了聚苯胺-氨基-碳纳米管(PANI-A-CNT)复合材料。利用傅里叶变换红外光谱(FT-IR)研究了聚苯胺与碳纳米管在复合材料中的化学键合性能。透射电镜(TEM)证实PANI- a - cnt材料核壳结构上的聚苯胺层尺寸为纳米级。为了评估不同碳纳米管含量对复合材料静电性能和力学性能的影响,制备了原始碳纳米管/ABS (p-CNT/ABS)和PANI-A-CNT/ABS复合材料。热重分析(TGA)结果表明,聚苯胺和碳纳米管在聚苯胺- a -碳纳米管中的质量分数分别为93.7和6.3 wt%;因此,4 wt%的PANI- a -CNT包括0.3 wt%的CNT和3.7 wt%的PANI。表面电阻测试表明,含有4 wt% PANI-A-CNT/ABS复合材料的表面电阻为108 Ω,比含有4 wt% p-CNT的p-CNT/ABS复合材料的表面电阻小1倍。此外,PANI-A-CNT/ABS复合材料(0-4 wt% PANI-A-CNT)比p-CNT/ABS复合材料(0-4 wt% p-CNT)具有更强的拉伸和冲击性能,扩大了ABS树脂的应用范围。
Synthesis and application properties of polyaniline-amino-carbon nanotube antistatic agents
Emulsion polymerization was used to create composites of polyaniline-amino-carbon nanotubes (PANI-A-CNT). Fourier transform infrared spectroscopy (FT-IR) was used to examine the chemical bonding properties of PANI and carbon nanotubes in composite materials. Transmission electron microscopy (TEM) was used to confirm that the PANI layer on the core-shell structure of PANI-A-CNT material was nanoscale in size. In order to assess the impact of various carbon nanotube contents on the electrostatic and mechanical properties of the composites, pristine carbon nanotube/ABS (p-CNT/ABS) and PANI-A-CNT/ABS composites were prepared. The mass fractions of PANI and CNT in PANI-A-CNT were 93.7 and 6.3 wt%, respectively, according to thermogravimetric analysis (TGA); hence, 4 wt% of PANI-A-CNT included 0.3 wt% CNT and 3.7 wt% PANI. The surface resistance test revealed that the PANI-A-CNT/ABS composite with 4 wt% PANI-A-CNT has a surface resistance of 108 Ω, which is one time less than the surface resistance of the p-CNT/ABS composite with 4 wt% p-CNT. Moreover, PANI-A-CNT/ABS composite (0–4 wt% PANI-A-CNT) has stronger tensile and impact properties than p-CNT/ABS composite (0–4 wt% p-CNT), expanding the range of applications for ABS resin.
期刊介绍:
Part A: Polymer Chemistry is devoted to studies in fundamental organic polymer chemistry and physical organic chemistry. This includes all related topics (such as organic, bioorganic, bioinorganic and biological chemistry of monomers, polymers, oligomers and model compounds, inorganic and organometallic chemistry for catalysts, mechanistic studies, supramolecular chemistry aspects relevant to polymer...